ترغب بنشر مسار تعليمي؟ اضغط هنا

Long-baseline interferometry is an important technique to spatially resolve binary or multiple systems in close orbits. By combining several telescopes together and spectrally dispersing the light, it is possible to detect faint components around bri ght stars. Aims. We provide a rigorous and detailed method to search for high-contrast companions around stars, determine the detection level, and estimate the dynamic range from interferometric observations. We developed the code CANDID (Companion Analysis and Non-Detection in Interferometric Data), a set of Python tools that allows us to search systematically for point-source, high-contrast companions and estimate the detection limit. The search pro- cedure is made on a N x N grid of fit, whose minimum needed resolution is estimated a posteriori. It includes a tool to estimate the detection level of the companion in the number of sigmas. The code CANDID also incorporates a robust method to set a 3{sigma} detection limit on the flux ratio, which is based on an analytical injection of a fake companion at each point in the grid. We used CANDID to search for the companions around the binary Cepheids V1334 Cyg, AX Cir, RT Aur, AW Per, SU Cas, and T Vul. First, we showed that our previous discoveries of the components orbiting V1334 Cyg and AX Cir were detected at > 13 sigmas. The companion around AW Per is detected at more than 15 sigmas with a flux ratio of f = 1.22 +/- 0.30 %. We made a possible detection of the companion orbiting RT Aur with f = 0.22 +/- 0.11 %. It was detected at 3.8{sigma} using the closure phases only, and so more observations are needed to confirm the detection. We also set the detection limit for possible undetected companions. We found that there is no companion with a spectral type earlier than B7V, A5V, F0V, B9V, A0V, and B9V orbiting V1334 Cyg, AX Cir, RT Aur, AW Per, SU Cas, and T Vul, respectively.
Aims: We aim at detecting and characterizing the main-sequence companion of the Cepheid AX Cir ($P_mathrm{orb} sim $ 18 yrs). The long-term objective is to estimate the mass of both components and the distance to the system. Methods: We used the PION IER combiner at the VLT Interferometer to obtain the first interferometric measurements of the short-period Cepheid AX Cir and its orbiting component. Results: The companion is resolved by PIONIER at a projected separation $rho = 29.2 pm 0.2$ mas and projection angle $PA = 167.6 pm 0.3^{circ}$. We measured $H$-band flux ratios between the companion and the Cepheid of $0.90 pm 0.10$ % and $0.75 pm 0.17$ %, respectively at a pulsation phase for the Cepheid $phi = 0.24$ and 0.48. The lower contrast at $phi = 0.48$ is due to increased brightness of the Cepheid compared to the $phi = 0.24$. This gives an average apparent magnitude $mmathrm{_H (comp)} = 9.06 pm 0.24$ mag. The limb-darkened angular diameter of the Cepheid at the two pulsation phases was measured to be $theta_mathrm{LD} = 0.839 pm 0.023$ mas and $theta_mathrm{LD} = 0.742 pm 0.020$ mas, respectively at $phi = 0.24$ and 0.48. A lower limit on the total mass of the system was also derived based on our measured separation, we found $M_mathrm{T} geq 9.7 pm 0.6 M_odot$.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا