ترغب بنشر مسار تعليمي؟ اضغط هنا

We explore the evolution of the Colour-Magnitude Relation (CMR) and Luminosity Function (LF) at 0.4<z<1.3 from the VIMOS Public Extragalactic Redshift Survey (VIPERS) using ~45,000 galaxies with precise spectroscopic redshifts down to i_AB<22.5 over ~10.32 deg^2 in two fields. From z=0.5 to z=1.3 the LF and CMR are well defined for different galaxy populations and M^*_B evolves by ~1.04(1.09)+/-0.06(0.10) mag for the total (red) galaxy sample. We compare different criteria for selecting early-type galaxies (ETGs): (1) fixed cut in rest-frame (U-V) colours, (2) evolving cut in (U-V) colours, (3) rest-frame (NUV-r)-(r-K) colour selection, and (4) SED classification. Regardless of the method we measure a consistent evolution of the red-sequence (RS). Between 0.4<z<1.3 we find a moderate evolution of the RS intercept of Delta(U-V)=0.28+/-0.14 mag, favouring exponentially declining star formation (SF) histories with SF truncation at 1.7<=z<=2.3. Together with the rise in the ETG number density by 0.64 dex since z=1, this suggests a rapid build-up of massive galaxies (M>10^11 M_sun) and expeditious RS formation over a short period of ~1.5 Gyr starting before z=1. This is supported by the detection of ongoing SF in ETGs at 0.9<z<1.0, in contrast with the quiescent red stellar populations of ETGs at 0.5<z<0.6. There is an increase in the observed CMR scatter with redshift, two times larger than in galaxy clusters and at variance with theoretical models. We discuss possible physical mechanisms that support the observed evolution of the red galaxy population. Our findings point out that massive galaxies have experienced a sharp SF quenching at z~1 with only limited additional merging. In contrast, less-massive galaxies experience a mix of SF truncation and minor mergers which build-up the low- and intermediate-mass end of the CMR.
We study a sample of 43 early-type galaxies, selected from the SDSS because they appeared to have velocity dispersion > 350 km/s. High-resolution photometry in the SDSS i passband using HRC-ACS on board the HST shows that just less than half of the s ample is made up of superpositions of two or three galaxies, so the reported velocity dispersion is incorrect. The other half of the sample is made up of single objects with genuinely large velocity dispersions. None of these objects has sigma larger than 426 +- 30 km/s. These objects define rather different relations than the bulk of the early-type galaxy population: for their luminosities, they are the smallest, most massive and densest galaxies in the Universe. Although the slopes of the scaling relations they define are rather different from those of the bulk of the population, they lie approximately parallel to those of the bulk at fixed sigma. These objects appear to be of two distinct types: the less luminous (M_r>-23) objects are rather flattened and extremely dense for their luminosities -- their properties suggest some amount of rotational support and merger histories with abnormally large amounts of gaseous dissipation. The more luminous objects (M_r<-23) tend to be round and to lie in or at the centers of clusters. Their properties are consistent with the hypothesis that they are BCGs. Models in which BCGs form from predominantly radial mergers having little angular momentum predict that they should be prolate. If viewed along the major axis, such objects would appear to have abnormally large sigma for their sizes, and to be abnormally round for their luminosities. This is true of the objects in our sample once we account for the fact that the most luminous galaxies (M_r<-23.5), and BCGs, become slightly less round with increasing luminosity.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا