ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a new photon number resolving detector (PNR), the Parallel Nanowire Detector (PND), which uses spatial multiplexing on a subwavelength scale to provide a single electrical output proportional to the photon number. The basic structure of th e PND is the parallel connection of several NbN superconducting nanowires (100 nm-wide, few nm-thick), folded in a meander pattern. Electrical and optical equivalents of the device were developed in order to gain insight on its working principle. PNDs were fabricated on 3-4 nm thick NbN films grown on sapphire (substrate temperature TS=900C) or MgO (TS=400C) substrates by reactive magnetron sputtering in an Ar/N2 gas mixture. The device performance was characterized in terms of speed and sensitivity. The photoresponse shows a full width at half maximum (FWHM) as low as 660ps. PNDs showed counting performance at 80 MHz repetition rate. Building the histograms of the photoresponse peak, no multiplication noise buildup is observable and a one photon quantum efficiency can be estimated to be QE=3% (at 700 nm wavelength and 4.2 K temperature). The PND significantly outperforms existing PNR detectors in terms of simplicity, sensitivity, speed, and multiplication noise.
We demonstrate high-performance nanowire superconducting single photon detectors (SSPDs) on ultrathin NbN films grown at a temperature compatible with monolithic integration. NbN films ranging from 150nm to 3nm in thickness were deposited by dc magne tron sputtering on MgO substrates at 400C. The superconducting properties of NbN films were optimized studying the effects of deposition parameters on film properties. SSPDs were fabricated on high quality NbN films of different thickness (7 to 3nm) deposited under optimal conditions. Electrical and optical characterizations were performed on the SSPDs. The highest QE value measured at 4.2K is 20% at 1300nm.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا