ترغب بنشر مسار تعليمي؟ اضغط هنا

We report a novel method for the fabrication of superconducting nanodevices based on niobium. The well-known difficulties of lithographic patterning of high-quality niobium are overcome by replacing the usual organic resist mask by a metallic one. Th e quality of the fabrication procedure is demonstrated by the realization and characterization of long and narrow superconducting lines and niobium-gold-niobium proximity SQUIDs.
341 - A. Fay , W. Guichard , O. Buisson 2010
We present a theoretical analysis of the quantum dynamics of a superconducting circuit based on a highly asymmetric Cooper pair transistor (ACPT) in parallel to a dc-SQUID. Starting from the full Hamiltonian we show that the circuit can be modeled as a charge qubit (ACPT) coupled to an anharmonic oscillator (dc-SQUID). Depending on the anharmonicity of the SQUID, the Hamiltonian can be reduced either to one that describes two coupled qubits or to the Jaynes-Cummings Hamiltonian. Here the dc-SQUID can be viewed as a tunable micron-size resonator. The coupling term, which is a combination of a capacitive and a Josephson coupling between the two qubits, can be tuned from the very strong- to the zero-coupling regimes. It describes very precisely the tunable coupling strength measured in this circuit and explains the quantronium as well as the adiabatic quantum transfer read-out.
146 - A. Fay 2007
We have realized a tunable coupling over a large frequency range between an asymmetric Cooper pair transistor (charge qubit) and a dc SQUID (phase qubit). Our circuit enables the independent manipulation of the quantum states of each qubit as well as their entanglement. The measurements of the charge qubits quantum states is performed by resonant read-out via the measurement of the quantum states of the SQUID. The measured coupling strength is in agreement with an analytic theory including a capacitive and a tunable Josephson coupling between the two qubits.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا