ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate the clustering of HI-selected galaxies in the ALFALFA survey and compare results with those obtained for HIPASS. Measurements of the angular correlation function and the inferred 3D-clustering are compared with results from direct spat ial-correlation measurements. We are able to measure clustering on smaller angular scales and for galaxies with lower HI masses than was previously possible. We calculate the expected clustering of dark matter using the redshift distributions of HIPASS and ALFALFA and show that the ALFALFA sample is somewhat more anti-biased with respect to dark matter than the HIPASS sample.
Based on the Sloan Digital Sky Survey DR6 (SDSS) and Millennium Simulation (MS) we investigate the alignment between galaxies and large-scale structure. For this purpose we develop two new statistical tools, namely the alignment correlation function and the cos(2theta)-statistic. The former is a two-dimensional extension of the traditional two-point correlation function and the latter is related to the ellipticity correlation function used for cosmic shear measurements. Both are based on the cross correlation between a sample of galaxies with orientations and a reference sample which represents the large-scale structure. Applied to the SDSS galaxy catalog the alignment correlation function reveals an overabundance of reference galaxies along the major axes of red, luminous (L > L*) galaxies out to projected separations of 60 Mpc/h. No alignment signal is detected for blue galaxies. The cos(2theta)-statistic yields very similar results. Starting from a MS semi-analytic galaxy catalog we assign an orientation to each red, luminous and central galaxy, based on the central region of the host halo. Alternatively, we use the orientation of the host halo itself. We find a mean projected misalignment between a halo and its central region of ~25 deg. Agreement with the SDSS results is good if the central orientations are used. Using the halo orientations overestimates the observed alignment by more than a factor of 2. The large volume of the MS allows to generate two-dimensional maps of the alignment correlation function which show the reference galaxy distribution to be flattened parallel to the orientations of red luminous galaxies with axis ratios of ~0.5 and ~0.75 for halo and central orientations,respectively. These ratios are almost independent of scale out to 60 Mpc/h.
Based on a cosmological N-body simulation we analyze spatial and kinematic alignments of satellite halos within six times the virial radius of group size host halos (Rvir). We measure three different types of spatial alignment: halo alignment between the orientation of the group central substructure (GCS) and the distribution of its satellites, radial alignment between the orientation of a satellite and the direction towards its GCS, and direct alignment between the orientation of the GCS and that of its satellites. In analogy we use the directions of satellite velocities and probe three further types of alignment: the radial velocity alignment between the satellite velocity and connecting line between satellite and GCS, the halo velocity alignment between the orientation of the GCS and satellite velocities and the auto velocity alignment between the satellites orientations and their velocities. We find that satellites are preferentially located along the major axis of the GCS within at least 6 Rvir (the range probed here). Furthermore, satellites preferentially point towards the GCS. The most pronounced signal is detected on small scales but a detectable signal extends out to 6 Rvir. The direct alignment signal is weaker, however a systematic trend is visible at distances < 2 Rvir. All velocity alignments are highly significant on small scales. Our results suggest that the halo alignment reflects the filamentary large scale structure which extends far beyond the virial radii of the groups. In contrast, the main contribution to the radial alignment arises from the adjustment of the satellite orientations in the group tidal field. The projected data reveal good agreement with recent results derived from large galaxy surveys. (abridged)
We study galaxy mergers using a high-resolution cosmological hydro/N-body simulation with star formation, and compare the measured merger timescales with theoretical predictions based on the Chandrasekhar formula. In contrast to Navarro et al., our n umerical results indicate, that the commonly used equation for the merger timescale given by Lacey and Cole, systematically underestimates the merger timescales for minor mergers and overestimates those for major mergers. This behavior is partly explained by the poor performance of their expression for the Coulomb logarithm, ln (m_pri/m_sat). The two alternative forms ln (1+m_pri/m_sat) and 1/2ln [1+(m_pri/m_sat)^2] for the Coulomb logarithm can account for the mass dependence of merger timescale successfully, but both of them underestimate the merger time scale by a factor 2. Since ln (1+m_pri/m_sat) represents the mass dependence slightly better we adopt this expression for the Coulomb logarithm. Furthermore, we find that the dependence of the merger timescale on the circularity parameter epsilon is much weaker than the widely adopted power-law epsilon^{0.78}, whereas 0.94*{epsilon}^{0.60}+0.60 provides a good match to the data. Based on these findings, we present an accurate and convenient fitting formula for the merger timescale of galaxies in cold dark matter models.
Using a large galaxy group catalogue based on the Sloan Digital Sky Survey Data Release 4 we measure three different types of intrinsic galaxy alignment within groups: halo alignment between the orientation of the brightest group galaxies (BGG) and t he distribution of its satellite galaxies, radial alignment between the orientation of a satellite galaxy and the direction towards its BGG, and direct alignment between the orientation of the BGG and that of its satellites. In agreement with previous studies we find that satellite galaxies are preferentially located along the major axis. In addition, on scales r < 0.7 Rvir we find that red satellites are preferentially aligned radially with the direction to the BGG. The orientations of blue satellites, however, are perfectly consistent with being isotropic. Finally, on scales r < 0.1 Rvir, we find a weak but significant indication for direct alignment between satellites and BGGs. We briefly discuss the implications for weak lensing measurements.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا