ترغب بنشر مسار تعليمي؟ اضغط هنا

164 - J. Paturej , A. Erbas , A. Milchev 2014
Using Molecular Dynamics simulations, we study the force-induced detachment of a coarse-grained model polymer chain from an adhesive substrate. One of the chain ends is thereby pulled at constant speed off the attractive substrate and the resulting s aw-tooth profile of the measured mean force $< f >$ vs height $D$ of the end-segment over the plane is analyzed for a broad variety of parameters. It is shown that the observed characteristic oscillations in the $< f >$-$D$ profile depend on the bending and not on the torsional stiffness of the detached chains. Allowing for the presence of hydrodynamic interactions (HI) in a setup with explicit solvent and DPD-thermostat, rather than the case of Langevin thermostat, one finds that HI have little effect on the $< f >$-$D$ profile. Also the change of substrate affinity with respect to the solvent from solvophilic to solvophobic is found to play negligible role in the desorption process. In contrast, a changing ratio $epsilon_s^A / epsilon_s^B$ of the binding energies of $A$- and $B$-segments in the detachment of an $AB$-copolymer from adhesive surface strongly changes the $< f >$-$D$ profile whereby the $B$-spikes vanish when $epsilon_s^A / epsilon_s^B < 0.15$. Eventually, performing an atomistic simulation of a (bio)-polymer {it polyglycine}, we demonstrate that the simulation results, derived from our coarse-grained model, comply favorably with those from the all-atom simulation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا