ترغب بنشر مسار تعليمي؟ اضغط هنا

The band structure, intra- and interband scattering processes of the electrons at the surface of a bismuth-bilayer on Bi$_2$Se$_3$ have been experimentally investigated by low-temperature Fourier-transform scanning tunneling spectroscopy. The observe d complex quasiparticle interference patterns are compared to a simulation based on the spin-dependent joint density of states approach using the surface-localized spectral function calculated from first principles as the only input. Thereby, the origin of the quasiparticle interferences can be traced back to intraband scattering in the bismuth bilayer valence band and Bi$_2$Se$_3$ conduction band, and to interband scattering between the two-dimensional topological state and the bismuth-bilayer valence band. The investigation reveals that the bilayer band gap, which is predicted to host one-dimensional topological states at the edges of the bilayer, is pushed several hundred milli-electronvolts above the Fermi level. This result is rationalized by an electron transfer from the bilayer to Bi$_2$Se$_3$ which also leads to a two-dimensional electron state in the Bi$_2$Se$_3$ conduction band with a strong Rashba spin-splitting, coexisting with the topological state and bilayer valence band.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا