ترغب بنشر مسار تعليمي؟ اضغط هنا

The starburst/Seyfert composite galaxy IRAS 01072+4954 (z=0.0236) is an enigmatic source that combines a Seyfert~1-like X-ray emission with a starburst optical spectrum that lacks broad line emission. We performed high angular resolution observations of the central kiloparsec of this galaxy in the near-infrared. Combining our data with 2MASS images of the whole galaxy, we obtain and model the surface brightness profile. We find indications for the presence of an elongated bar-like structure in both data sets. We also model the line of sight velocity distribution of the stars in the bulge. The derived photometrical and kinematical parameters of the bulge are used to evaluate the black hole mass through scaling relations. We find that all reliable estimations of the black hole mass are consistent with the presence of an intermediate mass black hole with a mass of ~10^5 solar masses (or less).
54 - N. Sabha , A. Eckart (1 2010
We discuss mm-wavelength radio, 2.2-11.8um NIR and 2-10 keV X-ray light curves of the super massive black hole (SMBH) counterpart of Sagittarius A* (SgrA*) near its lowest and highest observed luminosity states. The luminosity during the low state ca n be interpreted as synchrotron emission from a continuous or even spotted accretion disk. For the high luminosity state SSC emission from THz peaked source components can fully account for the flux density variations observed in the NIR and X-ray domain. We conclude that at near-infrared wavelengths the SSC mechanism is responsible for all emission from the lowest to the brightest flare from SgrA*. For the bright flare event of 4 April 2007 that was covered from the radio to the X-ray domain, the SSC model combined with adiabatic expansion can explain the related peak luminosities and different widths of the flare profiles obtained in the NIR and X-ray regime as well as the non detection in the radio domain.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا