ترغب بنشر مسار تعليمي؟ اضغط هنا

We show that a single impurity embedded in a cold atom bosonic Mott insulator leads to a novel polaron that exhibits correlated motion with an effective mass and a linear size that nearly diverge at critical value of the on-site impurity-boson intera ction strength. Cold atom technology can tune the polarons properties and break up the composite particle into a deconfined impurity-hole and boson particle state at finite, controllable polaron momentum.
We report on results of numerical studies of the spin polarization of the half filled second Landau level, which corresponds to the fractional quantum Hall state at filling factor $ u=5/2$. Our studies are performed using both exact diagonalization a nd Density Matrix Renormalization Group (DMRG) on the sphere. We find that for the Coulomb interaction the exact finite-system ground state is fully polarized, for shifts corresponding to both the Moore-Read Pfaffian state and its particle-hole conjugate (anti-Pfaffian). This result is found to be robust against small variations of the interaction. The low-energy excitation spectrum is consistent with spin-wave excitations of a fully-magnetized ferromagnet.
We study the real-time dynamics of a pair hole/doubly-occupied-site, namely a holon and a doublon, in a 1D Hubbard insulator with on-site and nearest-neighbor Coulomb repulsion. Our analysis shows that the pair is long-lived and the expected decay me chanism to underlying spin excitations is actually inefficient. For a nonzero inter-site Coulomb repulsion, we observe that part of the wave-function remains in a bound state. Our study also provides insight on the holon-doublon propagation in real space. Due to the one-dimensional nature of the problem, these particles move in opposite directions even in the absence of an applied electric field. The potential relevance of our results to solar cell applications is discussed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا