ترغب بنشر مسار تعليمي؟ اضغط هنا

Chiral magnetic interactions induce complex spin textures including helical and conical spin waves, as well as particle-like objects such as magnetic skyrmions and merons. These spin textures are the basis for innovative device paradigms and give ris e to exotic topological phenomena, thus being of interest for both applied and fundamental sciences. Present key questions address the dynamics of the spin system and emergent topological defects. Here we analyze the micromagnetic dynamics in the helimagnetic phase of FeGe. By combining magnetic force microscopy, single-spin magnetometry, and Landau-Lifschitz-Gilbert simulations we show that the nanoscale dynamics are governed by the depinning and subsequent motion of magnetic edge dislocations. The motion of these topologically stable objects triggers perturbations that can propagate over mesoscopic length scales. The observation of stochastic instabilities in the micromagnetic structure provides new insight to the spatio-temporal dynamics of itinerant helimagnets and topological defects, and discloses novel challenges regarding their technological usage.
We investigate experimentally the synchronization of a vortex based spin transfer oscillator to an external rf current whose frequency is at multiple integers, as well as half integer, of the oscillator frequency. Through a theoretical study of the l ocking process, we highlight both the crucial role of the symmetries of the spin torques acting on the magnetic vortex and the nonlinear properties of the oscillator on the phase locking process. Through the achievement of a perfect injection locking state, we report a record phase noise reduction down to -90dBc/Hz at 1 kHz offset frequency. The phase noise of these nanoscale oscillators is demonstrating as being low and controllable which is of significant importance for real applications using spin transfer devices.
We present measurements of spin relaxation times (T_1, T_1,rho, T_2) on very shallow (<5 nm) nitrogen-vacancy (NV) centers in high-purity diamond single crystals. We find a reduction of spin relaxation times up to 30x compared to bulk values, indicat ing the presence of ubiquitous magnetic impurities associated with the surface. Our measurements yield a density of 0.01-0.1 Bohr magnetons per nm^2 and a characteristic correlation time of 0.28(3) ns of surface states, with little variation between samples (implanted, N-doped) and surface terminations (H, F and O). A low temperature measurement further confirms that fluctuations are thermally activated. The data support the atomistic picture where impurities are associated with the top carbon layers, and not with terminating surface atoms or adsorbate molecules. The low spin density implies that the presence of a single surface impurity is sufficient to cause spin relaxation of a shallow NV center.
The temperature dependence of a vortex-based nano-oscillator induced by spin transfer torque (STVO) in magnetic tunnel junctions (MTJ) is considered. We obtain emitted signals with large output power and good signal coherence. Due to the reduced non- linearities compared to the uniform magnetization case, we first observe a linear decrease of linewidth with decreasing temperature. However, this expected behavior no longer applies at lower temperature and a bottom limit of the linewidth is measured.
We investigate the vortex excitations induced by a spin-polarized current in a magnetic nanopillar by means of micromagnetic simulations and analytical calculations. Damped motion, stationary vortex rotation and the switching of the vortex core are s uccessively observed for increasing values of the current. We demonstrate that even for small amplitude of the vortex motion, the analytical description based the classical Thiele approach can yield quantitatively and qualitatively unsound results. We suggest and validate a new analytical technique based on the calculation of the energy dissipation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا