ترغب بنشر مسار تعليمي؟ اضغط هنا

We review our recent developments of near-field scanning optical microscopy (NSOM) that uses an active tip made of a single fluorescent nanodiamond (ND) grafted onto the apex of a substrate fiber tip. The ND hosting a limited number of nitrogen-vacan cy (NV) color centers, such a tip is a scanning quantum source of light. The method for preparing the ND-based tips and their basic properties are summarized. Then we discuss theoretically the concept of spatial resolution that is achievable in this special NSOM configuration and find it to be only limited by the scan height over the imaged system, in contrast with the standard aperture-tip NSOM whose resolution depends critically on both the scan height and aperture diameter. Finally, we describe a scheme we have introduced recently for high-resolution imaging of nanoplasmonic structures with ND-based tips that is capable of approaching the ultimate resolution anticipated by theory.
342 - A. Drezet , C. Genet 2014
We show that, contrary to the common wisdom, surface plasmon poles are not involved in the imaging process in leakage radiation microscopy. Identifying the leakage radiation modes directly from a transverse magnetic potential leads us to reconsider t he surface plasmon field and unfold the non-plasmonic contribution to the image formation. While both contributions interfere in the imaging process, our analysis reveals that the reassessed plasmonic field embodies a pole mathematically similar to the usual surface plasmon pole. This removes a long-standing ambiguity associated with plasmonic signals in leakage radiation microscopy.
518 - O. Mollet , A. Drezet , S. Huant 2013
A nanodiamond (ND) hosting nitrogen-vacancy (NV) color centers is attached on the apex of an optical tip for near-field microscopy. Its fluorescence is used to launch surface plasmon-polaritons (SPPs) in a thin polycrystalline gold film. It is shown that the quantum nature of the initial source of light is preserved after conversion to SPPs. This opens the way to a deterministic quantum plasmonics, where single SPPs can be injected at well-defined positions in a plasmonic device produced by top-down approaches.
106 - O. Mollet , A. Cuche , A. Drezet 2011
Leakage-radiation microscopy of a thin gold film demonstrates the ability of an ensemble of fluorescent diamond nanoparticles attached onto the apex of an optical tip to serve as an efficient near-field surface-plasmon polariton launcher. The impleme ntation of the nanodiamond-based tip in a near-field scanning optical microscope will allow for an accurate control on the launching position, thereby opening the way to scanning plasmonics.
Light interacts differently with left and right handed three dimensional chiral objects, like helices, and this leads to the phenomenon known as optical activity. Here, by applying a polarization tomography, we show experimentally, for the first time in the visible domain, that chirality has a different optical manifestation for twisted planar nanostructured metallic objects acting as isolated chiral metaobjects. Our analysis demonstrate how surface plasmons, which are lossy bidimensional electromagnetic waves propagating on top of the structure, can delocalize light information in the just precise way for giving rise to this subtle effect.
We introduce a point-like scanning single-photon source that operates at room temperature and offers an exceptional photostability (no blinking, no bleaching). This is obtained by grafting in a controlled way a diamond nanocrystal (size around 20 nm) with single nitrogen-vacancy color-center occupancy at the apex of an optical probe. As an application, we image metallic nanostructures in the near-field, thereby achieving a near-field scanning single-photon microscopy working at room temperature on the long term. Our work may be of importance to various emerging fields of nanoscience where an accurate positioning of a quantum emitter is required such as for example quantum plasmonics.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا