ترغب بنشر مسار تعليمي؟ اضغط هنا

After reviewing the importance of light as a probe for testing the structure of space-time, we describe the GINGER project. GINGER will be a three-dimensional array of large size ring-lasers able to measure the de Sitter and Lense-Thirring effects. T he instrument will be located at the underground laboratory of GranSasso, in Italy. We describe the preliminary actions and measurements already under way and present the full road map to GINGER. The intermediate apparatuses GP2 and GINGERino are described. GINGER is expected to be fully operating in few years.
We propose an under-ground experiment to detect the general relativistic effects due to the curvature of space-time around the Earth (de Sitter effect) and to rotation of the planet (dragging of the inertial frames or Lense-Thirring effect). It is ba sed on the comparison between the IERS value of the Earth rotation vector and corresponding measurements obtained by a tri-axial laser detector of rotation. The proposed detector consists of six large ring-lasers arranged along three orthogonal axes. In about two years of data taking, the 1% sensitivity required for the measurement of the Lense-Thirring drag can be reached with square rings of 6 $m$ side, assuming a shot noise limited sensitivity ($ 20 prad/s/sqrt{Hz}$). The multi-gyros system, composed of rings whose planes are perpendicular to one or the other of three orthogonal axes, can be built in several ways. Here, we consider cubic and octahedron structures. The symmetries of the proposed configurations provide mathematical relations that can be used to study the stability of the scale factors, the relative orientations or the ring-laser planes, very important to get rid of systematics in long-term measurements, which are required in order to determine the relativistic effects.
Large scale square ring laser gyros with a length of four meters on each side are approaching a sensitivity of 1x10^-11 rad/s/sqrt(Hz). This is about the regime required to measure the gravitomagnetic effect (Lense Thirring) of the Earth. For an ense mble of linearly independent gyros each measurement signal depends upon the orientation of each single axis gyro with respect to the rotational axis of the Earth. Therefore at least 3 gyros are necessary to reconstruct the complete angular orientation of the apparatus. In general, the setup consists of several laser gyroscopes (we would prefer more than 3 for sufficient redundancy), rigidly referenced to each other. Adding more gyros for one plane of observation provides a cross-check against intra-system biases and furthermore has the advantage of improving the signal to noise ratio by the square root of the number of gyros. In this paper we analyze a system of two pairs of identical gyros (twins) with a slightly different orientation with respect to the Earth axis. The twin gyro configuration has several interesting properties. The relative angle can be controlled and provides a useful null measurement. A quadruple twin system could reach a 1% sensitivity after 3:2 years of data, provided each square ring has 6 m length on a side, the system is shot noise limited and there is no source for 1/f- noise.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا