ترغب بنشر مسار تعليمي؟ اضغط هنا

131 - Rafael C. Cardoso 2020
Software engineering of modular robotic systems is a challenging task, however, verifying that the developed components all behave as they should individually and as a whole presents its own unique set of challenges. In particular, distinct component s in a modular robotic system often require different verification techniques to ensure that they behave as expected. Ensuring whole system consistency when individual components are verified using a variety of techniques and formalisms is difficult. This paper discusses how to use compositional verification to integrate the various verification techniques that are applied to modular robotic software, using a First-Order Logic (FOL) contract that captures each components assumptions and guarantees. These contracts can then be used to guide the verification of the individual components, be it by testing or the use of a formal method. We provide an illustrative example of an autonomous robot used in remote inspection. We also discuss a way of defining confidence for the verification associated with each component.
A laser calibration system was developed for monitoring and calibrating time of flight (TOF) scintillating detector arrays. The system includes setups for both small- and large-scale scintillator arrays. Following test-bench characterization, the las er system was recently commissioned in experimental Hall B at the Thomas Jefferson National Accelerator Facility for use on the new Backward Angle Neutron Detector (BAND) scintillator array. The system successfully provided time walk corrections, absolute time calibration, and TOF drift correction for the scintillators in BAND. This showcases the general applicability of the system for use on high-precision TOF detectors.
We present the construction of a new white-light coronal brightness index (CBI) from the entire archive of observations recorded by the Large Angle Spectrometric Coronagraph (LASCO) C2 camera between 1996 and 2017, comprising two full solar cycles. W e reduce all fully calibrated daily C2 observations of the white light corona into a single daily coronal brightness observation for every day of observation recorded by the instrument, with mean daily brightness values binned into 0.1 Rsun radial x 1 degree angular regions from 2.4 -- 6.2 Rsun for a full 360-degrees. As a demonstration of the utility of the CBI, we construct a new solar irradiance proxy that correlates well with a variety of direct solar irradiance observations, with correlations shown to be in the range of 0.77-0.89. We also present a correlation mapping technique to show how irradiance correlations depend on, and relate to, coronal structure/locations, and to demonstrate how the LASCO CBI can be used to perform long-term spatial correlation studies to investigate relationships between the solar corona and any arbitrary concurrent geophysical index. Using this technique we find possible relationships between coronal brightness and plasma temperature, interplanetary magnetic field magnitude and (very weakly) proton density.
Ensuring that autonomous space robot control software behaves as it should is crucial, particularly as software failure in space often equates to mission failure and could potentially endanger nearby astronauts and costly equipment. To minimise missi on failure caused by software errors, we can utilise a variety of tools and techniques to verify that the software behaves as intended. In particular, distinct nodes in a robotic system often require different verification techniques to ensure that they behave as expected. This paper introduces a method for integrating the various verification techniques that are applied to robotic software, via a First-Order Logic (FOL) specification that captures each nodes assumptions and guarantees. These FOL specifications are then used to guide the verification of the individual nodes, be it by testing or the use of a formal method. We also outline a way of measuring our confidence in the verification of the entire system in terms of the verification techniques used.
A trapped field of over 3 T has been measured at 17.5 K in a magnetised stack of two disc-shaped bulk MgB2 superconductors of diameter 25 mm and thickness 5.4 mm. The bulk MgB2 samples were fabricated by uniaxial hot pressing, which is a readily scal able, industrial technique, to 91% of their maximum theoretical density. The macroscopic critical current density derived from the trapped field data using the Biot-Savart law is consistent with the measured local critical current density. From this we conclude that critical current density, and therefore trapped field performance, is limited by the flux pinning available in MgB2, rather than by lack of connectivity. This suggests strongly that both increasing sample size and enhancing pinning through doping will allow further increases in trapped field performance of bulk MgB2.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا