ترغب بنشر مسار تعليمي؟ اضغط هنا

We present new Chandra and XMM-Newton observations of a sample of eight radio-quiet Gamma-ray pulsars detected by the Fermi Large Area Telescope. For all eight pulsars we identify the X-ray counterpart, based on the X-ray source localization and the best position obtained from Gamma-ray pulsar timing. For PSR J2030+4415 we found evidence for an about 10 arcsec-long pulsar wind nebula. Our new results consolidate the work from Marelli et al. 2011 and confirm that, on average, the Gamma-ray--to--X-ray flux ratios (Fgamma/Fx) of radio-quiet pulsars are higher than for the radio-loud ones. Furthermore, while the Fgamma/Fx distribution features a single peak for the radio-quiet pulsars, the distribution is more dispersed for the radio-loud ones, possibly showing two peaks. We discuss possible implications of these different distributions based on current models for pulsar X-ray emission.
Statistical analysis of the eigenfunctions of the Anderson tight-binding model with on-site disorder on regular random graphs strongly suggests that the extended states are multifractal at any finite disorder. The spectrum of fractal dimensions $f(al pha)$ defined in Eq.(3), remains positive for $alpha$ noticeably far from 1 even when the disorder is several times weaker than the one which leads to the Anderson localization, i.e. the ergodicity can be reached only in the absence of disorder. The one-particle multifractality on the Bethe lattice signals on a possible inapplicability of the equipartition law to a generic many-body quantum system as long as it remains isolated.
The middle-aged PSR J0357+3205 is a nearby, radio-quiet, bright gamma-ray pulsar discovered by the Fermi mission. Our previous Chandra observation revealed a huge, very peculiar structure of diffuse X-ray emission, originating at the pulsar position and extending for > 9 on the plane of the sky. To better understand the nature of such a nebula, we have studied the proper motion of the parent pulsar. We performed relative astrometry on Chandra images of the field spanning a time baseline of 2.2 yr, unveiling a significant angular displacement of the pulsar counterpart, corresponding to a proper motion of 0.165+/-0.030 yr^(-1). At a distance of ~500 pc, the space velocity of the pulsar would be of ~390 km s^(-1) assuming no inclination with respect to the plane of the sky. The direction of the pulsar proper motion is perfectly aligned with the main axis of the X-ray nebula, pointing to a physical, yet elusive link between the nebula and the pulsar space velocity. No optical emission in the H_alpha line is seen in a deep image collected at the Gemini telescope, which implies that the interstellar medium into which the pulsar is moving is fully ionized.
RX J0822-4300 is the Central Compact Object associated with the Puppis A supernova remnant. Previous X-ray observations suggested RX J0822-4300 to be a young neutron star with a weak dipole field and a peculiar surface temperature distribution domina ted by two antipodal spots with different temperatures and sizes. An emission line at 0.8 keV was also detected. We performed a very deep (130 ks) observation with XMM-Newton, which allowed us to study in detail the phase-resolved properties of RX J0822-4300. Our new data confirm the existence of a narrow spectral feature, best modelled as an emission line, only seen in the `Soft phase interval - when the cooler region is best aligned to the line of sight. Surprisingly, comparison of our recent observations to the older ones yields evidence for a variation in the emission line component, which can be modelled as a decrease in the central energy from ~0.80 keV in 2001 to ~0.73 keV in 2009--2010. The line could be generated via cyclotron scattering of thermal photons in an optically thin layer of gas, or - alternatively - it could originate in low-rate accretion by a debris disk. In any case, a variation in energy, pointing to a variation of the magnetic field in the line emitting region, cannot be easily accounted for.
We analyze the thermalization properties and the validity of the Eigenstate Thermalization Hypothesis in a generic class of quantum Hamiltonians where the quench parameter explicitly breaks a Z_2 symmetry. Natural realizations of such systems are giv en by random matrices expressed in a block form where the terms responsible for the quench dynamics are the off-diagonal blocks. Our analysis examines both dense and sparse random matrix realizations of the Hamiltonians and the observables. Sparse random matrices may be associated with local quantum Hamiltonians and they show a different spread of the observables on the energy eigenstates with respect to the dense ones. In particular, the numerical data seems to support the existence of rare states, i.e. states where the observables take expectation values which are different compared to the typical ones sampled by the micro-canonical distribution. In the case of sparse random matrices we also extract the finite size behavior of two different time scales associated with the thermalization process.
The Large Area Telescope (LAT) onboard the Fermi satellite opened a new era for pulsar astronomy, detecting gamma-ray pulsations from more than 60 pulsars, ~40% of which are not seen at radio wavelengths. One of the most interesting sources discovere d by LAT is PSR J0357+3205, a radio-quiet, middle-aged (tau_C ~0.5 Myr) pulsar standing out for its very low spin-down luminosity (Erot ~6x10^33 erg/s), indeed the lowest among non-recycled gamma-ray pulsars. A deep X-ray observation with Chandra (0.5-10 keV), coupled with sensitive optical/infrared ground-based images of the field, allowed us to identify PSR J0357+3205 as a faint source with a soft spectrum, consistent with a purely non-thermal emission (photon index Gamma=2.53+/-0.25). The absorbing column (NH=8+/-4x10^20 cm^-2) is consistent with a distance of a few hundred parsecs. Moreover, the Chandra data unveiled a huge (9 arcmin long) extended feature apparently protruding from the pulsar. Its non-thermal X-ray spectrum points to synchrotron emission from energetic particles from the pulsar wind, possibly similar to other elongated X-ray tails associated with rotation-powered pulsars and explained as bow-shock pulsar wind nebulae (PWNe). However, energetic arguments, as well as the peculiar morphology of the diffuse feature associated with PSR J0357+3205 make the bow-shock PWN interpretation rather challenging.
Prompted by the Fermi LAT discovery of a radio-quiet gamma-ray pulsar inside the CTA 1 supernova remnant, we obtained a 130 ks XMM-Newton observation to assess the timing behavior of this pulsar. Exploiting both the unprecedented photon harvest and t he contemporary Fermi LAT timing measurements, a 4.7 sigma single peak pulsation is detected, making PSR J0007+7303 the second example, after Geminga, of a radio-quiet gamma-ray pulsar also seen to pulsate in X-rays. Phase-resolved spectroscopy shows that the off-pulse portion of the light curve is dominated by a power-law, non-thermal spectrum, while the X-ray peak emission appears to be mainly of thermal origin, probably from a polar cap heated by magnetospheric return currents, pointing to a hot spot varying throughout the pulsar rotation.
The study of Gamma-ray bursts (GRBs) is a key field to expand our understanding of several astrophysical and cosmological phenomena. SVOM is a Chinese-French Mission which will permit to detect and rapidly locate GRBs, in particular those at high red shift, and to study their multiwavelength emission. The SVOM satellite, to be launched in 2013, will carry wide field instruments operating in the X/gamma-ray band and narrow field optical and soft X-ray telescopes. Here we describe a small soft X-ray telescope (XIAO) proposed as an Italian contribution to the SVOM mission. Thanks to a grazing incidence X-ray telescope with effective area of ~120 cm^2 and a short focal length, coupled to a very compact, low noise, fast read out CCD camera, XIAO can substantially contribute to the overall SVOM capabilities for both GRB and non-GRB science.
We present the results of a ~230 ks long X-ray observation of the relativistic double-pulsar system PSR J0737-3039 obtained with the XMM-Newton satellite in 2006 October. We confirm the detection in X-rays of pulsed emission from PSR J0737-3039A (PSR A), mostly ascribed to a soft non-thermal power-law component (photon index ~ 3.3) with a 0.2-3 keV luminosity of ~1.9E+30 erg/s (assuming a distance of 500 pc). For the first time, pulsed X-ray emission from PSR J0737-3039B (PSR B) is also detected in part of the orbit. This emission, consistent with thermal radiation with temperature kT=30 eV and a bolometric luminosity of ~1E+32 erg/s, is likely powered by heating of PSR Bs surface caused by PSR As wind. A hotter (~130 eV) and fainter (~5E+29 erg/s) thermal component, probably originating from back-falling particles heating polar caps of either PSR A or PSR B is also required by the data. No signs of X-ray emission from a bow-shock between PSR As wind and the interstellar medium or PSR Bs magnetosphere are present. The upper limit on the luminosity of such a shock component (~1E+29 erg/s) constrains the wind magnetization parameter sigma of PSR A to values greater than 1.
PSR B0540-69 is the Crab twin in the Large Magellanic Cloud. Age, energetic and overall behaviour of the two pulsars are very similar. The same is true for the general appearance of their pulsar wind nebulae (PWNe). Analysis of Hubble Space Telescope images spanning 10 years unveiled significant variability in the PWN surrounding PSR B0540-69, with a hot spot moving at ~0.04c. Such behaviour, reminiscent of the variability observed in the Crab nebula along the counter-jet direction, may suggest an alternative scenario for the geometry of the system. The same data were used to assess the pulsar proper motion. The null displacement recorded over 10 y allowed us to set a 3sigma upper limit of 290 km/s to the pulsar velocity.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا