ترغب بنشر مسار تعليمي؟ اضغط هنا

422 - M. Teodoro 2011
The periodic spectroscopic events in eta Carinae are now well established and occur near the periastron passage of two massive stars in a very eccentric orbit. Several mechanisms have been proposed to explain the variations of different spectral feat ures, such as an eclipse by the wind-wind collision boundary, a shell ejection from the primary star or accretion of its wind onto the secondary. All of them have problems explaining all the observed phenomena. To better understand the nature of the cyclic events, we performed a dense monitoring of eta Carinae with 5 Southern telescopes during the 2009 low excitation event, resulting in a set of data of unprecedented quality and sampling. The intrinsic luminosity of the He II 4686 emission line (L~310 Lsun) just before periastron reveals the presence of a very luminous transient source of extreme UV radiation emitted in the wind-wind collision (WWC) region. Clumps in the primarys wind probably explain the flare-like behavior of both the X-ray and He II 4686 light-curves. After a short-lived minimum, He II 4686 emission rises again to a ne
We present preliminary results of our analysis on the long-term variations observed in the optical spectrum of the LBV star Eta Carinae. Based on the hydrogen line profiles, we conclude that the physical parameters of the primary star did not change in the last 15 years.
We present a near infrared study of the stellar content of 35 H,{sc{ii}} regions in the Galactic plane. In this work, we have used the near infrared domain $J-$, $H-$ and $K_{s}-$ band color images to visually inspect the sample. Also, color-color an d color-magnitude diagrams were used to indicate ionizing star candidates, as well as, the presence of young stellar objects such as classical TTauri Stars (CTTS) and massive young stellar objects (MYSOs). We have obtained {it Spitzer} IRAC images for each region to help further characterize them. {it Spitzer} and near infrared morphology to place each cluster in an evolutionary phase of development. {it Spitzer} photometry was also used to classify the MYSOs. Comparison of the main sequence in color-magnitude diagrams to each observed cluster was used to infer whether or not the cluster kinematic distance is consistent with brightnesses of the stellar sources. We find qualitative agreement for a dozen of the regions, but about half the regions have near infrared photometry that suggests they may be closer than the kinematic distance. A significant fraction of these already have spectrophotometric parallaxes which support smaller distances. These discrepancies between kinematic and spectrophotometric distances are not due to the spectrophotometric methodologies, since independent non-kinematic measurements are in agreement with the spectrophotometric results. For instance, trigonometric parallaxes of star-forming regions were collected from the literature and show the same effect of smaller distances when compared to the kinematic results. In our sample of H,{sc{ii}} regions, most of the clusters are evident in the near infrared images. Finally, it is possible to distinguish among qualitative evolutionary stages for these objects.
81 - M. Teodoro 2008
This work presents the first integral field spectroscopy of the Homunculus nebula around Eta Carinae in the near-infrared spectral region (J band). We confirmed the presence of a hole on the polar region of each lobe, as indicated by previous near-IR long-slit spectra and mid-IR images. The holes can be described as a cylinder of height (i.e. the thickness of the lobe) and diameter of 6.5 and 6.0x10^{16} cm, respectively. We also mapped the blue-shifted component of He I 10830 seen towards the NW lobe. Contrary to previous works, we suggested that this blue-shifted component is not related to the Paddle but it is indeed in the equatorial disc. We confirmed the claim of Smith (2005) and showed that the spatial extent of the Little Homunculus matches remarkably well the radio continuum emission at 3 cm, indicating that the Little Homunculus can be regarded as a small HII region. Therefore, we used the optically-thin 1.3 mm radio flux to derive a lower limit for the number of Lyman-continuum photons of the central source in Eta Car. In the context of a binary system, and assuming that the ionising flux comes entirely from the hot companion star, the lower limit for its spectral type and luminosity class ranges from O5.5 III to O7 I. Moreover, we showed that the radio peak at 1.7 arcsec NW from the central star is in the same line-of-sight of the `Sr-filament but they are obviously spatially separated, while the blue-shifted component of He I 10830 may be related to the radio peak and can be explained by the ultraviolet radiation from the companion star.
A full description of the 5.5-yr low excitation events in Eta Carinae is presented. We show that they are not as simple and brief as previously thought, but a combination of two components. The first, the slow variation component, is revealed by slow changes in the ionization level of circumstellar matter across the whole cycle and is caused by gradual changes in the wind-wind collision shock-cone orientation, angular opening and gaseous content. The second, the collapse component, is restricted to around the minimum, and is due to a temporary global collapse of the wind-wind collision shock. High energy photons (E > 16 eV) from the companion star are strongly shielded, leaving the Weigelt objects at low ionization state for >6 months. High energy phenomena are sensitive only to the collapse, low energy only to the slow variation and intermediate energies to both components. Simple eclipses and mechanisms effective only near periastron (e.g., shell ejection or accretion onto the secondary star) cannot account for the whole 5.5-yr cycle. We find anti-correlated changes in the intensity and the radial velocity of P Cygni absorption profiles in FeII 6455 and HeI 7065 lines, indicating that the former is associated to the primary and the latter to the secondary star. We present a set of light curves representative of the whole spectrum, useful for monitoring the next event (2009 January 11).
94 - A. Damineli 2007
Extensive spectral observations of eta Carinae over the last cycle, and particularly around the 2003.5 low excitation event, have been obtained. The variability of both narrow and broad lines, when combined with data taken from two earlier cycles, re veal a common and well defined period. We have combined the cycle lengths derived from the many lines in the optical spectrum with those from broad-band X-rays, optical and near-infrared observations, and obtained a period length of 2022.7+-1.3 d. Spectroscopic data collected during the last 60 years yield an average period of 2020+-4 d, consistent with the present day period. The period cannot have changed by more than $Delta$P/P=0.0007 since 1948. This confirms the previous claims of a true, stable periodicity, and gives strong support to the binary scenario. We have used the disappearance of the narrow component of HeI 6678 to define the epoch of the Cycle 11 minimum, T_0=JD 2,452,819.8. The next event is predicted to occur on 2009 January 11 (+-2 days). The dates for the start of the minimum in other spectral features and broad-bands is very close to this date, and have well determined time delays from the HeI epoch.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا