ترغب بنشر مسار تعليمي؟ اضغط هنا

The super-earth planet GJ 1214b has recently been the focus of several studies, using the transit spectroscopy technique, trying to determine the nature of its atmosphere. Here we focus on the Halpha line as a tool to further restrict the nature of G J1214s atmosphere. We used the Gran Telescopio Canarias (GTC) OSIRIS instrument to acquire narrow band photometry with tunable filters. With our observations, we were able to observe the primary transit of the super-Earth GJ 1214b in three bandpasses: two centered in the continuum around Halpha (653.5 nm and 662.0 nm) and one centered at the line core (656.3 nm). We measure the depth of the planetary transit at each wavelength interval.By fitting analytic models to the measured light curves we were able to compute the depth of the transit at the three bandpasses. Taking the difference in the computed planet to star radius ratio between the line and the comparison continuum filters, we find Delta (Rp/Rstar)_{Halpha-653.5} = (6.60 +/- 3.54) 10^-3 and Delta (Rp/Rstar)_{Halpha-662.0} = (3.30 +/- 3.61) 10^-3. Although the planet radius is found to be larger in the Halpha line than in the surrounding continuum, the quality of our observations and the sigma level of the differences (1.8 and 1.0, respectively) does not allow us to claim an Halpha excess in GJ1214s atmosphere. Further observations will be needed to resolve this issue.
In this paper, we present low resolution (R=500) near-infrared spectra for selected and serendipitous sources in six inner in-plane Galactic fields, with the aim of analysing the stellar content present. From the equivalent widths of the main feature s of the K band spectra (the NaI, CaI and CO bandheads) we have derived the metallicities of the sources by means of the empirical scale obtained by Ramirez et al. (2000) and Frogel et al. (2001) for luminous red giants. Our results show how the mean metallicity of the sample varies with Galactic longitude. We find two groups of stars, one whose [Fe/H] is similar to the values obtained for the bulge in other studies (Molla et al. 2000; Schultehis et al 2003), and a second one with a metallicity similar to that of the inner parts of the disc (Rocha-Pinto et al. 2006). The relative density of both groups of stars in our sample varies in a continuous way from the bulge to the disc. This could hint at the existence of a single component apart from the disc and bulge, running from l=7 to l=27 and able to transport disc stars inwards and bulge stars outwards, which could be the Galactic bar that has been detected in previous works as an overdensity of stars located at those galactic coordinates (Hammersley et al. 1994, 2000; Picaud et al. 2003).
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا