ترغب بنشر مسار تعليمي؟ اضغط هنا

Cosmic ray electrons and positrons constitute an important component of the background for imaging atmospheric Cherenkov Telescope Systems with very low energy thresholds. As the primary energy of electrons and positrons decreases, their contribution to the background trigger rate dominates over protons, at least in terms of differential rates against actual energies. After event reconstruction, this contribution might become comparable to the proton background at energies of the order of few GeV. It is well known that the flux of low energy charged particles is suppressed by the Earths magnetic field. This effect strongly depends on the geographical location, the direction of incidence of the charged particle and its mass. Therefore, the geomagnetic field can contribute to diminish the rate of the electrons and positrons detected by a given array of Cherenkov Telescopes. In this work we study the propagation of low energy primary electrons in the Earths magnetic field by using the backtracking technique. We use a more realistic geomagnetic field model than the one used in previous calculations. We consider some sites relevant for new generations of imaging atmospheric Cherenkov Telescopes. We also study in detail the case of 5@5, a proposed low energy Cherenkov Telescope array.
We present a method to measure the relative spectral response of the Pierre Auger Observatory Fluorescence Detector. The calibration was done at wavelengths of 320, 337, 355, 380 and 405 nm using an end-to-end technique in which the response of all d etector components are combined in a single measurement. A xenon flasher and notch-filters were used as the light source for the calibration device. The overall uncertainty is 5%.
We have searched for possible sites in Argentina for the installation of large air Cherenkov telescope arrays and water Cherenkov systems. At present seven candidates are identified at altitudes from 2500 to 4500 m. The highest sites are located at t he Northwest of the country, in La Puna. Sites at 2500 and 3100 m are located in the West at El Leoncito Observatory, with excellent infrastructure. A description of these candidate sites is presented with emphasis on infrastructure and climatology.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا