ترغب بنشر مسار تعليمي؟ اضغط هنا

46 - A. C. Boley , M. A. Morris , 2013
A fundamental, unsolved problem in Solar System formation is explaining the melting and crystallization of chondrules found in chondritic meteorites. Theoretical models of chondrule melting in nebular shocks has been shown to be consistent with many aspects of thermal histories inferred for chondrules from laboratory experiments; but, the mechanism driving these shocks is unknown. Planetesimals and planetary embryos on eccentric orbits can produce bow shocks as they move supersonically through the disk gas, and are one possible source of chondrule-melting shocks. We investigate chondrule formation in bow shocks around planetoids through 3D radiation hydrodynamics simulations. A new radiation transport algorithm that combines elements of flux-limited diffusion and Monte Carlo methods is used to capture the complexity of radiative transport around bow shocks. An equation of state that includes the rotational, vibrational, and dissociation modes of H$_2$ is also used. Solids are followed directly in the simulations and their thermal histories are recorded. Adiabatic expansion creates rapid cooling of the gas, and tail shocks behind the embryo can cause secondary heating events. Radiative transport is efficient, and bow shocks around planetoids can have luminosities $sim$few$times10^{-8}$ L$_{odot}$. While barred and radial chondrule textures could be produced in the radiative shocks explored here, porphyritic chondrules may only be possible in the adiabatic limit. We present a series of predicted cooling curves that merit investigation in laboratory experiments to determine whether the solids produced by bow shocks are represented in the meteoritic record by chondrules or other solids.
Until now, axisymmetric, alpha-disc models have been adopted for calculations of the chemical composition of protoplanetary discs. While this approach is reasonable for many discs, it is not appropriate when self-gravity is important. In this case, s piral waves and shocks cause temperature and density variations that affect the chemistry. We have adopted a dynamical model of a solar-mass star surrounded by a massive (0.39 Msun), self-gravitating disc, similar to those that may be found around Class 0 and early Class I protostars, in a study of disc chemistry. We find that for each of a number of species, e.g. H2O, adsorption and desorption dominate the changes in the gas-phase fractional abundance; because the desorption rates are very sensitive to temperature, maps of the emissions from such species should reveal the locations of shocks of varying strengths. The gas-phase fractional abundances of some other species, e.g. CS, are also affected by gas-phase reactions, particularly in warm shocked regions. We conclude that the dynamics of massive discs have a strong impact on how they appear when imaged in the emission lines of various molecular species.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا