ترغب بنشر مسار تعليمي؟ اضغط هنا

72 - A. Boden , G. Torres , G. Duchene 2011
We report on new high-resolution imaging and spectroscopy on the multiple T Tauri star system V773 Tau over the 2003 -- 2009 period. With these data we derive relative astrometry, photometry between the A and B components, and radial velocity (RV) of the A-subsystem components. Combining these new data with previously published astrometry and RVs, we update the relative A-B orbit model. This updated orbit model, the known system distance, and A subsystem parameters yields a dynamical mass for the B component for the first time. Remarkably the derived B dynamical mass is in the range of 1.7 -- 3.0 M$_sun$. This is much higher than previous estimates, and suggests that like A, B is also a multiple stellar system. Among these data, spatially-resolved spectroscopy provide new insight into the nature of the B component. Similar to A, these near-IR spectra indicate that the dominant source in B is of mid-K spectral type. If B is in fact a multiple star system as suggested by the dynamical mass estimate, the simplest assumption is that B is composed of similar $sim$ 1.2 M$_sun$ PMS stars in a close ($<$ 1 AU) binary system. This inference is supported by line-shape changes in near-IR spectroscopy of B, tentatively interpreted as changing RV among components in V773 Tau B. Relative photometry indicate that B is highly variable in the near-IR. The most likely explanation for this variability is circum-B material resulting in variable line-of-sight extinction. The distribution of this material must be significantly affected by both the putative B multiplicity, and the A-B orbit.
117 - A. Boden , R. Akeson , A. Sargent 2009
We report on near-infrared (IR) interferometric observations of the double-lined pre-main sequence (PMS) binary system DQ Tau. We model these data with a visual orbit for DQ Tau supported by the spectroscopic orbit & analysis of citet{Mathieu1997}. F urther, DQ Tau exhibits significant near-IR excess; modeling our data requires inclusion of near-IR light from an excess source. Remarkably the excess source is resolved in our data, similar in scale to the binary itself ($sim$ 0.2 AU at apastron), rather than the larger circumbinary disk ($sim$ 0.4 AU radius). Our observations support the citet{Mathieu1997} and citet{Carr2001} inference of significant warm material near the DQ Tau binary.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا