ترغب بنشر مسار تعليمي؟ اضغط هنا

137 - M. Zemcov , A. Blain , A. Cooray 2013
We have observed four massive galaxy clusters with the SPIRE instrument on the Herschel Space Observatory and measure a deficit of surface brightness within their central region after subtracting sources. We simulate the effects of instrumental sensi tivity and resolution, the source population, and the lensing effect of the clusters to estimate the shape and amplitude of the deficit. The amplitude of the central deficit is a strong function of the surface density and flux distribution of the background sources. We find that for the current best fitting faint end number counts, and excellent lensing models, the most likely amplitude of the central deficit is the full intensity of the cosmic infrared background (CIB). Our measurement leads to a lower limit to the integrated total intensity of the CIB of I(250 microns) > 0.69_(-0.03)^(+0.03) (stat.)_(-0.06)^(+0.11) (sys.) MJy/sr, with more CIB possible from both low-redshift sources and from sources within the target clusters. It should be possible to observe this effect in existing high angular resolution data at other wavelengths where the CIB is bright, which would allow tests of models of the faint source component of the CIB.
Probing the growth of structure from the epoch of hydrogen recombination to the formation of the first stars and galaxies is one of the most important uncharted areas of observational cosmology. Far-IR spectroscopy covering $lambda$ 100-500 microns f rom space, and narrow partial transmission atmospheric bands available from the ground, opens up the possibility of probing the molecular hydrogen and metal fine-structure lines from primordial clouds from which the first stars and galaxies formed at 6 < z $<$ 15. Building on Spitzer observations of unexpectedly powerful H2 emission from shocks, we argue that next-generation far-IR space telescopes may open a new window into the main cloud cooling processes and feedback effects which characterized this vital, but unexplored epoch. Without this window, we are essential blind to the dominant cloud cooling which inevitably led to star formation and cosmic reionization.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا