ترغب بنشر مسار تعليمي؟ اضغط هنا

We present an analysis of the binary and physical parameters of a unique pulsating white dwarf with a main-sequence companion, SDSS J1136+0409, observed for more than 77 d during the first pointing of the extended Kepler mission: K2 Campaign 1. Using new ground-based spectroscopy, we show that this post-common-envelope binary has an orbital period of 6.89760103(60) hr, which is also seen in the photometry as a result of Doppler beaming and ellipsoidal variations of the secondary. We spectroscopically refine the temperature of the white dwarf to 12330(260) K and its mass to 0.601(36) Msun. We detect seven independent pulsation modes in the K2 light curve. A preliminary asteroseismic solution is in reasonable agreement with the spectroscopic atmospheric parameters. Three of the pulsation modes are clearly rotationally split multiplets, which we use to demonstrate that the white dwarf is not synchronously rotating with the orbital period but has a rotation period of 2.49(53) hr. This is faster than any known isolated white dwarf, but slower than almost all white dwarfs measured in non-magnetic cataclysmic variables, the likely future state of this binary.
133 - A. Bischoff-Kim 2010
We present the results of the asteroseismological analysis of two rich DAVs, G38-29 and R808, recent targets of the Whole Earth Telescope. 20 periods between 413 s and 1089 s were found in G38-29s pulsation spectrum, while R808 is an even richer puls ator, with 24 periods between 404 s and 1144 s. Traditionally, DAVs that have been analyzed asteroseismologically have had fewer than half a dozen modes. Such a large number of modes presents a special challenge to white dwarf asteroseismology, but at the same time has the potential to yield a detailed picture of the interior chemical make-up of DAVs.We explore this possibility by varying the core profiles as well as the layer masses.We use an iterative grid search approach to find best fit models for G38-29 and R808 and comment on some of the intricacies of fine grid searches in white dwarf asteroseismology.
We now have a good measurement of the cooling rate of G117-B15A. In the near future, we will have equally well determined cooling rates for other pulsating white dwarfs, including R548. The ability to measure their cooling rates offers us a unique wa y to study weakly interacting particles that would contribute to their cooling. Working toward that goal, we perform a careful asteroseismological analysis of G117-B15A and R548. We study them side by side because they have similar observed properties. We carry out a systematic, fine grid search for best fit models to the observed period spectra of those stars. We freely vary 4 parameters: the effective temperature, the stellar mass, the helium layer mass, and the hydrogen layer mass. We identify and quantify a number of uncertainties associated with our models. Based on the results of that analysis and fits to the periods observed in R548 and G117-B15A, we clearly define the regions of the 4 dimensional parameter space ocuppied by the best fit models.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا