ترغب بنشر مسار تعليمي؟ اضغط هنا

130 - T. Bretz , A. Biland , J. Buss 2014
Since more than two years, the First G-APD Cherenkov Telescope (FACT) is operating successfully at the Canary Island of La Palma. Apart from its purpose to serve as a monitoring facility for the brightest TeV blazars, it was built as a major step to establish solid state photon counters as detectors in Cherenkov astronomy. The camera of the First G-APD Cherenkov Telesope comprises 1440 Geiger-mode avalanche photo diodes (G-APD aka. MPPC or SiPM) for photon detection. Since properties as the gain of G-APDs depend on temperature and the applied voltage, a real-time feedback system has been developed and implemented. To correct for the change introduced by temperature, several sensors have been placed close to the photon detectors. Their read out is used to calculate a corresponding voltage offset. In addition to temperature changes, changing current introduces a voltage drop in the supporting resistor network. To correct changes in the voltage drop introduced by varying photon flux from the night-sky background, the current is measured and the voltage drop calculated. To check the stability of the G-APD properties, dark count spectra with high statistics have been taken under different environmental conditions and been evaluated. The maximum data rate delivered by the camera is about 240 MB/s. The recorded data, which can exceed 1 TB in a moonless night, is compressed in real-time with a proprietary loss-less algorithm. The performance is better than gzip by almost a factor of two in compression ratio and speed. In total, two to three CPU cores are needed for data taking. In parallel, a quick-look analysis of the recently recorded data is executed on a second machine. Its result is publicly available within a few minutes after the data were taken. [...]
285 - A. Biland , T. Bretz , J. Bu{ss} 2014
The First G-APD Cherenkov Telescope (FACT) is the first in-operation test of the performance of silicon photo detectors in Cherenkov Astronomy. For more than two years it is operated on La Palma, Canary Islands (Spain), for the purpose of long-term m onitoring of astrophysical sources. For this, the performance of the photo detectors is crucial and therefore has been studied in great detail. Special care has been taken for their temperature and voltage dependence implementing a correction method to keep their properties stable. Several measurements have been carried out to monitor the performance. The measurements and their results are shown, demonstrating the stability of the gain below the percent level. The resulting stability of the whole system is discussed, nicely demonstrating that silicon photo detectors are perfectly suited for the usage in Cherenkov telescopes, especially for long-term monitoring purpose.
53 - T. Bretz , A. Biland , J. Bu{ss} 2013
The First G-APD Cherenkov telescope (FACT) is the first telescope using silicon photon detectors (G-APD aka. SiPM). The use of Silicon devices promise a higher photon detection efficiency, more robustness and higher precision than photo-multiplier tu bes. Being operated during different light-conditions, the threshold settings of a Cherenkov telescope have to be adapted to feature the lowest possible threshold but also an efficient suppression of triggers from night-sky background photons. Usually this threshold is set either by experience or a mini-ratescan. Since the measured current through the sensors is directly correlated with the noise level, the current can be used to set the best threshold at any time. Due to the correlation between the physical threshold and the final energy threshold, the current can also be used as a measure for the energy threshold of any observation. This presentation introduces a method which uses the properties of the moon and the source position to predict the currents and the corresponding energy threshold for every upcoming observation allowing to adapt the observation schedule accordingly.
67 - T. Bretz , A. Biland , J. Bu{ss} 2013
The First G-APD Cherenkov telescope (FACT) is the first telescope using silicon photon detectors (G-APD aka. SiPM). The use of Silicon devices promise a higher photon detection efficiency, more robustness and higher precision than photo-multiplier tu bes. Since the properties of G-APDs depend on auxiliary parameters like temperature, a feedback system adapting the applied voltage accordingly is mandatory. In this presentation, the feedback system, developed and in operation for FACT, is presented. Using the extraction of a single photon-equivalent (pe) spectrum as a reference, it can be proven that the sensors can be operated with very high precision. The extraction of the single-pe, its spectrum up to 10,pe, its properties and their precision, as well as their long-term behavior during operation are discussed. As a by product a single pulse template is obtained. It is shown that with the presented method, an additional external calibration device can be omitted. The presented method is essential for the application of G-APDs in future projects in Cherenkov astronomy and is supposed to result in a more stable and precise operation than possible with photo-multiplier tubes.
The First G-APD Cherenkov Telescope (FACT) became operational at La Palma in October 2011. Since summer 2012, due to very smooth and stable operation, it is the first telescope of its kind that is routinely operated from remote, without the need for a data-taking crew on site. In addition, many standard tasks of operation are executed automatically without the need for manual interaction. Based on the experience gained so far, some alterations to improve the safety of the system are under development to allow robotic operation in the future. We present the setup and precautions used to implement remote operations and the experience gained so far, as well as the work towards robotic operation.
47 - A. Biland 2013
List of all contributions from the First G-APD Cherenkov Telescope (FACT) Collaboration to the 33rd International Cosmic Ray Conference (ICRC)
84 - H. Anderhub 2013
The First G-APD Cherenkov Telescope (FACT) is designed to detect cosmic gamma-rays with energies from several hundred GeV up to about 10 TeV using the Imaging Atmospheric Cherenkov Technique. In contrast to former or existing telescopes, the camera o f the FACT telescope is comprised of solid-state Geiger-mode Avalanche Photodiodes (G-APD) instead of photomultiplier tubes for photo detection. It is the first full-scale device of its kind employing this new technology. The telescope is operated at the Observatorio del Roque de los Muchachos (La Palma, Canary Islands, Spain) since fall 2011. This paper describes in detail the design, construction and operation of the system, including hardware and software aspects. Technical experiences gained after one year of operation are discussed and conclusions with regard to future projects are drawn.
105 - G. Puhlhofer 2012
The future Cherenkov Telescope Array (CTA) will consist of several tens of telescopes of different mirror sizes. CTA will provide next generation sensitivity to very high energy photons from few tens of GeV to >100 TeV. Several focal plane instrument ation options are currently being evaluated inside the CTA consortium. In this paper, the current status of the FlashCam prototyping project is described. FlashCam is based on a fully digital camera readout concept and features a clean separation between photon detector plane and signal digitization/triggering electronics.
Geiger-mode Avalanche Photodiodes (G-APD) bear the potential to significantly improve the sensitivity of Imaging Air Cherenkov Telescopes (IACT). We are currently building the First G-APD Cherenkov Telescope (FACT) by refurbishing an old IACT with a mirror area of 9.5 square meters and construct a new, fine pixelized camera using novel G-APDs. The main goal is to evaluate the performance of a complete system by observing very high energy gamma-rays from the Crab Nebula. This is an important field test to check the feasibility of G-APD-based cameras to replace at some time the PMT-based cameras of planned future IACTs like AGIS and CTA. In this article, we present the basic design of such a camera as well as some important details to be taken into account.
Imaging air Cherenkov telescopes (IACTs) detect the Cherenkov light from extensive air showers (EAS) initiated by very high energy (VHE) gamma-rays impinging on the Earths atmosphere. Due to the overwhelming background from hadron induced EAS, the di scrimination of the rare gamma-like events is vital. The influence of the geomagnetic field (GF) on the development of EAS can further complicate the imaging air Cherenkov technique. The amount and the angular distribution of Cherenkov light from EAS can be obtained by means of Monte Carlo (MC) simulations. Here we present the results from dedicated MC studies of GF effects on images from gamma-ray initiated EAS for the MAGIC telescope site, where the GF strength is ~40 micro Tesla. The results from the MC studies suggest that GF effects degrade not only measurements of very low energy gamma-rays below ~100 GeV but also those at TeV-energies.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا