ترغب بنشر مسار تعليمي؟ اضغط هنا

69 - A. Best , M. Beard , J. Gorres 2013
The ratio between the rates of the reactions O-17(alpha,n)Ne-20 and O-17(alpha,gamma)Ne-21 determines whether O-16 is an efficient neutron poison for the s process in massive stars, or if most of the neutrons captured by O-16(n,gamma) are recycled in to the stellar environment. This ratio is of particular relevance to constrain the s process yields of fast rotating massive stars at low metallicity. Recent results on the (alpha,gamma) channel have made it necessary to measure the (alpha,n) reaction more precisely and investigate the effect of the new data on s process nucleosynthesis in massive stars. We present a new measurement of the O-17(alpha, n) reaction using a moderating neutron detector. In addition, the (alpha, n_1) channel has been measured independently by observation of the characteristic 1633 keV gamma-transition in Ne-20. The reaction cross section was determined with a simultaneous R-matrix fit to both channels. (alpha,n) and (alpha, gamma) resonance strengths of states lying below the covered energy range were estimated using their known properties from the literature. A new O-17(alpha,n) reaction rate was deduced for the temperature range 0.1 GK to 10 GK. It was found that in He burning conditions the (alpha,gamma) channel is strong enough to compete with the neutron channel. This leads to a less efficient neutron recycling compared to a previous suggestion of a very weak (alpha,gamma) channel. S process calculations using our rates confirm that massive rotating stars do play a significant role in the production of elements up to Sr, but they strongly reduce the s process contribution to heavier elements.
The COMPTEL instrument performed the first mapping of the 1.809 MeV photons in the Galaxy, triggering considerable interest in determing the sources of interstellar 26Al. The predicted 26Al is too low compared to the observation, for a better underst anding more accurate rates for the 25Mg(p; gamma)26Al reaction are required. The 25Mg(p;gamma)26Al reaction has been investigated at the resonances at Er= 745; 418; 374; 304 keV at Ruhr-Universitat-Bochum using a Tandem accelerator and a 4piNaI detector. In addition the resonance at Er = 189 keV has been measured deep underground laboratory at Laboratori Nazionali del Gran Sasso, exploiting the strong suppression of cosmic background. This low resonance has been studied with the 400 kV LUNA accelerator and a HPGe detector. The preliminary results of the resonance strengths will be reported.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا