ترغب بنشر مسار تعليمي؟ اضغط هنا

A method with which to calculate the Gilbert damping parameter from a real-space electronic structure method is reported here. The anisotropy of the Gilbert damping with respect to the magnetic moment direction and local chemical environment is calcu lated for bulk and surfaces of Fe$_{50}$Co$_{50}$ alloys from first principles electronic structure in a real space formulation. The size of the damping anisotropy for Fe$_{50}$Co$_{50}$ alloys is demonstrated to be significant. Depending on details of the simulations, it reaches a maximum-minimum damping ratio as high as 200%. Several microscopic origins of the strongly enhanced Gilbert damping anisotropy have been examined, where in particular interface/surface effects stand out, as do local distortions of the crystal structure. Although theory does not reproduce the experimentally reported high ratio of 400% [Phys. Rev. Lett. 122, 117203 (2019)], it nevertheless identifies microscopic mechanisms that can lead to huge damping anisotropies.
It has been predicted theoretically and indirectly confirmed experimentally that single-layer CrX$_3$ (X=Cl, Br, I) might be the prototypes of topological magnetic insulators (TMI). In this work, by using first-principles calculations combined with a tomistic spin dynamics we provide a complete picture of the magnetic interactions and magnetic excitations in CrX$_3$. The focus is here on the two most important aspects for the actual realization of TMI, namely the relativistic magnetic interactions and the finite-size (edge) effects. We compute the full interaction tensor, which includes both Kitaev and Dzyaloshinskii-Moriya terms, which are considered as the most likely mechanisms for stabilizing topological magnons. First, we instigate the properties of bulk CrI$_3$ and compare the simulated magnon spectrum with the experimental data [Phys. Rev. X 8, 041028 (2018)]. Our results suggest that a large size of topological gap, seen in experiment ($approx$ 4 meV), can not be explained by considering pair-wise spin interactions only. We identify several possible reasons for this disagreement and suggest that a pronounced magneto-elastic coupling should be expected in this class of materials. The magnetic interactions in the monolayers of CrX$_3$ are also investigated. The strength of the anisotropic interactions is shown to scale with the position of halide atom in the Periodic Table, the heavier the element the larger is the anisotropy. Comparing the magnons for the bulk and single-layer CrI$_3$, we find that the size of the topological gap becomes smaller in the latter case. Finally, we investigate finite-size effects in monolayers and demonstrate that the anisotropic couplings between Cr atoms close to the edges are much stronger than those in ideal periodic structure. This should have impact on the dynamics of the magnon edge modes in this class of materials.
III-V nanowires are useful platforms for studying the electronic and mechanical properties of materials at the nanometer scale. However, the costs associated with commercial nanowire growth reactors are prohibitive for most research groups. We develo ped hot-wall and cold-wall metal organic vapor phase epitaxy (MOVPE) reactors for the growth of InAs nanowires, which both use the same gas handling system. The hot-wall reactor is based on an inexpensive quartz tube furnace and yields InAs nanowires for a narrow range of operating conditions. Improvement of crystal quality and an increase in growth run to growth run reproducibility are obtained using a homebuilt UHV cold-wall reactor with a base pressure of 2 X 10$^{-9}$ Torr. A load-lock on the UHV reactor prevents the growth chamber from being exposed to atmospheric conditions during sample transfers. Nanowires grown in the cold-wall system have a low defect density, as determined using transmission electron microscopy, and exhibit field effect gating with mobilities approaching 16,000 cm$^2$(V.s).
Our Introduction starts with a short general review of the magnetic and structural properties of the Heusler compounds which are under discussion in this book. Then, more specifically, we come to the discussion of our experimental results on multilay ers composed of the Heusler alloys Co2MnGe and Co2MnSn with V or Au as interlayers. The experimental methods we apply combine magnetization and magneto-resistivity measurements, x-ray diffraction and reflectivity, soft x-ray magnetic circular dichroism and spin polarized neutron reflectivity. We find that below a critical thickness of the Heusler layers at typically dcr = 1.5 nm the ferromagnetic order is lost and spin glass order occurs instead. For very thin ferromagnetic Heusler layers there are peculiarities in the magnetic order which are unusual when compared to conventional ferromagnetic transition metal multilayer systems. In [Co2MnGe/Au] multilayers there is an exchange bias shift at the ferromagnetic hysteresis loops at low temperatures caused by spin glass ordering at the interface. In [Co2MnGe/V] multilayers we observe an antiferromagnetic interlayer long range ordering below a well defined Neel temperature originating from the dipolar stray fields at the magnetically rough Heusler layer interfaces.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا