ترغب بنشر مسار تعليمي؟ اضغط هنا

70 - A. E. Tsitali 2014
The Chamaeleon clouds are excellent targets for low-mass star formation studies. Cha I and II are actively forming stars while Cha III shows no sign of ongoing star formation. We aim to determine the driving factors that have led to the very differen t levels of star formation activity in Cha I and III and examine the dynamical state and possible evolution of the starless cores within them. Observations were performed in various molecular transitions with APEX and Mopra. Five cores are gravitationally bound in Cha I and one in Cha III. The infall signature is seen toward 8-17 cores in Cha I and 2-5 cores in Cha III, which leads to a range of 13-28% of the cores in Cha I and 10-25% of the cores in Cha III that are contracting and may become prestellar. Future dynamical interactions between the cores will not be dynamically significant in either Cha I or III, but the subregion Cha I North may experience collisions between cores within ~0.7 Myr. Turbulence dissipation in the cores of both clouds is seen in the high-density tracers N2H+ 1-0 and HC3N 10-9. Evidence of depletion in the Cha I core interiors is seen in the abundance distributions of C17O, C18O, and C34S. Both contraction and static chemical models indicate that the HC3N to N2H+ abundance ratio is a good evolutionary indicator in the prestellar phase for both gravitationally bound and unbound cores. In the framework of these models, we find that the cores in Cha III and the southern part of Cha I are in a similar evolutionary stage and are less chemically evolved than the central region of Cha I. The measured HC3N/N2H+ abundance ratio and the evidence for contraction motions seen towards the Cha III starless cores suggest that Cha III is younger than Cha I Centre and that some of its cores may form stars in the future. The cores in Cha I South may on the other hand be transient structures. (abridged)
We investigate the origin of complex organic molecules (COMs) in the gas phase around the low-mass Class~0 protostar NGC1333-IRAS2A, to determine if the COM emission lines trace an embedded disk, shocks from the protostellar jet, or the warm inner pa rts of the protostellar envelope. In the framework of the CALYPSO (Continuum And Lines in Young ProtoStellar Objects) IRAM Plateau de Bure survey, we obtained large bandwidth spectra at sub-arcsecond resolution towards NGC 1333-IRAS2A. We identify the emission lines towards the central protostar and perform Gaussian fits to constrain the size of the emitting region for each of these lines, tracing various physical conditions and scales. The emission of numerous COMs such as methanol, ethylene glycol, and methyl formate is spatially resolved by our observations. This allows us to measure, for the first time, the size of the COM emission inside the protostellar envelope, finding that it originates from a region of radius 40-100 AU, centered on the NGC 1333-IRAS2A protostellar object. Our analysis shows no preferential elongation of the COM emission along the jet axis, and therefore does not support the hypothesis that COM emission arises from shocked envelope material at the base of the jet. Down to similar sizes, the dust continuum emission is well reproduced with a single envelope model, and therefore does not favor the hypothesis that COM emission arises from the thermal sublimation of grains embedded in a circumstellar disk. Finally, the typical scale $sim$60 AU observed for COM emission is consistent with the size of the inner envelope where $T_{rm{dust}} > 100$ K is expected. Our data therefore strongly suggest that the COM emission traces the hot corino in IRAS2A, i.e., the warm inner envelope material where the icy mantles of dust grains evaporate because they are passively heated by the central protostellar object.
91 - B. Parise , A. Belloche , F. Du 2010
Context: In the last years, the H2D+ and D2H+ molecules have gained great attention as probes of cold and depleted dense molecular cloud cores. These ions are at the basis of molecular deuterium fractionation, a common characteristic observed in star forming regions. H2D+ is now routinely observed, but the search for its isotopologue D2H+ is still difficult because of the high frequency of its ground para transition (692 GHz). Aims: We have observed molecular transitions of H2D+ and D2H+ in a cold prestellar core to characterize the roots of deuterium chemistry. Methods: Thanks to the sensitive multi-pixel CHAMP+ receiver on the APEX telescope where the required excellent weather conditions are met, we not only successfully detect D2H+ in the H-MM1 prestellar core located in the L1688 cloud, but also obtain information on the spatial extent of its emission. We also detect H2D+ at 372 GHz in the same source. We analyse these detections using a non-LTE radiative transfer code and a state-of-the-art spin-dependent chemical model. Results: This observation is the first secure detection of D2H+ in space. The emission is moreover extended over several pixels of the CHAMP+ array, i.e. on a scale of at least 40, corresponding to ~ 4800 AU. We derive column densities on the order of 1e12-1e13 cm-2 for both molecules in the LTE approximation depending on the assumed temperature, and up to two orders of magnitude higher based on a non-LTE analysis. Conclusions: Our modeling suggests that the level of CO depletion must be extremely high (>10, and even >100 if the temperature of the core is around 10 K) at the core center, in contradiction with CO depletion levels directly measured in other cores. Observation of the H2D+ spatial distribution and direct measurement of the CO depletion in H-MM1 will be essential to confirm if present chemical models investigating the basis of deuterium [...].
177 - A. Belloche 2009
In recent years, organic molecules of increasing complexity have been found toward the prolific Galactic center source Sagittarius B2. We wish to explore the degree of complexity that the interstellar chemistry can reach in star-forming regions. We c arried out a complete line survey of the hot cores Sgr B2(N) and (M) with the IRAM 30 m telescope in the 3 mm range. We analyzed this spectral survey in the LTE approximation. We modeled the emission of all known molecules simultaneously, which allows us to search for less abundant, more complex molecules. We compared the derived column densities with the predictions of a coupled gas-phase and grain-surface chemical code. We report the first detection in space of ethyl formate (C2H5OCHO) and n-propyl cyanide (C3H7CN) toward Sgr B2(N). The abundances of ethyl formate and n-propyl cyanide relative to H2 are estimated to be 3.6e-9 and 1.0e-9, respectively. Our chemical modeling suggests that the sequential, piecewise construction of ethyl and n-propyl cyanide from their constituent functional groups on the grain surfaces is their most likely formation route. Ethyl formate is primarily formed on the grains by adding CH3 to functional-group radicals derived from methyl formate, although ethanol may also be a precursor. The detection in Sgr B2(N) of the next stage of complexity in two classes of complex molecule, esters and alkyl cyanides, suggests that greater complexity in other classes of molecule may be present in the interstellar medium. {Abridged}
109 - K. M. Menten 2007
Context: Maser emission from the H2O molecule probes the warm, inner circumstellar envelopes of oxygen-rich red giant and supergiant stars. Multi-maser transition studies can be used to put constraints on the density and temperature of the emission r egions. Aims: A number of known H2O maser lines were observed toward the long period variables R Leo and W Hya and the red supergiant VY CMa. A search for a new, not yet detected line near 475 GHz was conducted toward these stars. Methods: The Atacama Pathfinder Experiment telescope was used for a multi-transition observational study of submillimeter H2O lines. Results: The 5_33-4_40 transition near 475 GHz was clearly detected toward VY CMa and W Hya. Many other H2O lines were detected toward all three target stars. Relative line intensity ratios and velocity widths were found to vary significantly from star to star. Conclusions: Maser action is observed in all but one line for which it was theoretically predicted. In contrast, one of the strongest maser lines, in R Leo by far the strongest, the 437 GHz 7_53-6_60 transition, is not predicted to be inverted. Some other qualitative predictions of the model calculations are at variance with our observations. Plausible reasons for this are discussed. Based on our findings for W Hya and VY CMa, we find evidence that the H2O masers in the AGB star W Hya arise from the regular circumstellar outflow, while shock excitation in a high velocity flow seems to be required to excite masers far from the red supergiant VY CMa.
119 - Ph. Andre , A. Belloche , F. Motte 2007
The earliest phases of clustered star formation and the origin of the stellar initial mass function (IMF) are currently much debated. In order to constrain the origin of the IMF, we investigated the internal and relative motions of starless condensat ions and protostars previously detected by us in the dust continuum at 1.2mm in the L1688 protocluster of the Ophiuchus molecular cloud complex. The starless condensations have a mass spectrum resembling the IMF and are therefore likely representative of the initial stages of star formation in the protocluster. We carried out detailed molecular line observations, including some N2H+(1-0) mapping, of the Ophiuchus protocluster condensations using the IRAM 30m telescope. We measured subsonic or at most transonic levels of internal turbulence within the condensations, implying virial masses which generally agree within a factor of ~ 2 with the masses derived from the 1.2mm dust continuum. This supports the notion that most of the L1688 starless condensations are gravitationally bound and prestellar in nature. We measured a global one-dimensional velocity dispersion of less than 0.4 km/s between condensations. This small relative velocity dispersion implies that, in general, the condensations do not have time to interact with one another before evolving into pre-main sequence objects. Our observations support the view that the IMF is partly determined by cloud fragmentation at the prestellar stage. Competitive accretion is unlikely to be the dominant mechanism at the protostellar stage in the Ophiuchus protocluster, but it may possibly govern the growth of starless, self-gravitating condensations initially produced by gravoturbulent fragmentation toward an IMF, Salpeter-like mass spectrum.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا