ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a multiwavelength morphological analysis of star forming clouds and filaments in the central ($< 50$ kpc) regions of 16 low redshift ($z<0.3$) cool core brightest cluster galaxies (BCGs). New Hubble Space Telescope (HST) imaging of far ult raviolet continuum emission from young ($sim 10$ Myr), massive ($> 5$ Msol) stars reveals filamentary and clumpy morphologies, which we quantify by means of structural indices. The FUV data are compared with X-ray, Ly$alpha$, narrowband H$alpha$, broadband optical/IR, and radio maps, providing a high spatial resolution atlas of star formation locales relative to the ambient hot ($sim10^{7-8}$ K) and warm ionised ($sim 10^4$ K) gas phases, as well as the old stellar population and radio-bright AGN outflows. Nearly half of the sample possesses kpc-scale filaments that, in projection, extend toward and around radio lobes and/or X-ray cavities. These filaments may have been uplifted by the propagating jet or buoyant X-ray bubble, or may have formed {it in situ} by cloud collapse at the interface of a radio lobe or rapid cooling in a cavitys compressed shell. The morphological diversity of nearly the entire FUV sample is reproduced by recent hydrodynamical simulations in which the AGN powers a self-regulating rain of thermally unstable star forming clouds that precipitate from the hot atmosphere. In this model, precipitation triggers where the cooling-to- freefall time ratio is $t_{mathrm{cool}}/t_{mathrm{ff}}sim 10$. This condition is roughly met at the maxmial projected FUV radius for more than half of our sample, and clustering about this ratio is stronger for sources with higher star formation rates.
We present U, V, and I-band images of the host galaxy of Hercules A (3C 348) obtained with HST/WFC3/UVIS. We find a network of dusty filaments which are more complex and extended than seen in earlier HST observations. The filaments are associated wit h a faint blue continuum light (possibly from young stars) and faint H-alpha emission. It seems likely that the cold gas and dust has been stripped from a companion galaxy now seen as a secondary nucleus. There are dusty filaments aligned with the base of the jets on both eastern and western sides of the galaxy. The morphology of the filaments is different on the two sides - the western filaments are fairly straight, while the eastern filaments are mainly in two loop-like structures. We suggest that despite the difference in morphologies, both sets of filaments have been entrained in a slow moving boundary layer outside the relativistic flow. As suggested by Fabian et al. (2008), magnetic fields in the filaments may stabilize them against disruption. We consider a speculative scenario to explain the relation between the radio source and the shock and cavities in the hot ICM seen in the Chandra data (Nulsen et al. 2005). We suggest the radio source originally (~60 Myr ago) propagated along a position angle of ~35 degrees where it created the shock and cavities. The radio source axis changed to its current orientation (~100 degrees) possibly due to a supermassive black hole merger and began its current epoch of activity about 20 Myr ago.
We present new Chandra X-ray observations of the brightest cluster galaxy (BCG) in the cool core cluster Abell 2597. The data reveal an extensive kpc-scale X-ray cavity network as well as a 15 kpc filament of soft-excess gas exhibiting strong spatial correlation with archival VLA radio data. In addition to several possible scenarios, multiwavelength evidence may suggest that the filament is associated with multiphase (10^3 - 10^7 K) gas that has been entrained and dredged-up by the propagating radio source. Stemming from a full spectral analysis, we also present profiles and 2D spectral maps of modeled X-ray temperature, entropy, pressure, and metal abundance. The maps reveal an arc of hot gas which in projection borders the inner edge of a large X-ray cavity. Although limited by strong caveats, we suggest that the hot arc may be (a) due to a compressed rim of cold gas pushed outward by the radio bubble or (b) morphologically and energetically consistent with cavity-driven active galactic nucleus (AGN) heating models invoked to quench cooling flows, in which the enthalpy of a buoyant X-ray cavity is locally thermalized as ambient gas rushes to refill its wake. If confirmed, this would be the first observational evidence for this model.
We present new Spitzer IRS spectroscopy of Cygnus A, one of the most luminous radio sources in the local universe. Data on the inner 20 are combined with new reductions of MIPS and IRAC photometry as well as data from the literature to form a radio t hrough mid-infrared spectral energy distribution (SED). This SED is then modeled as a combination of torus reprocessed active galactic nucleus (AGN) radiation, dust enshrouded starburst, and a synchrotron jet. This combination of physically motivated components successfully reproduces the observed emission over almost 5 dex in frequency. The bolometric AGN luminosity is found to be 10^12 L_odot (90% of LIR), with a clumpy AGN-heated dust medium extending to sim130 pc from the supermassive black hole. Evidence is seen for a break or cutoff in the core synchrotron emission. The associated population of relativistic electrons could in principle be responsible for some of the observed X-ray emission though the synchrotron self-Compton mechanism. The SED requires a cool dust component, consistent with dust-reprocessed radiation from ongoing star formation. Star formation contributes at least 6 times 10^10 L_odot to the bolometric output of Cygnus A, corresponding to a star formation rate of sim10 M_odot yr-1.
We present HST/WFPC2 Linear Ramp Filter images of high surface brightness emission lines (either [OII], [OIII], or H-alpha+[NII]) in 80 3CR radio sources. We overlay the emission line images on high resolution VLA radio images (eight of which are new reductions of archival data) in order to examine the spatial relationship between the optical and radio emission. We confirm that the radio and optical emission line structures are consistent with weak alignment at low redshift (z < 0.6) except in the Compact Steep Spectrum (CSS) radio galaxies where both the radio source and the emission line nebulae are on galactic scales and strong alignment is seen at all redshifts. There are weak trends for the aligned emission line nebulae to be more luminous, and for the emission line nebula size to increase with redshift and/or radio power. The combination of these results suggests that there is a limited but real capacity for the radio source to influence the properties of the emission line nebulae at these low redshifts (z < 0.6). Our results are consistent with previous suggestions that both mechanical and radiant energy are responsible for generating alignment between the radio source and emission line gas.
We observed the brightest central galaxy (BCG) in the nearby (z=0.0821) cool core galaxy cluster Abell 2597 with the IRAC and MIPS instruments on board the Spitzer Space Telescope. The BCG was clearly detected in all Spitzer bandpasses, including the 70 and 160 micron wavebands. We report aperture photometry of the BCG. The spectral energy distribution exhibits a clear excess in the FIR over a Rayleigh-Jeans stellar tail, indicating a star formation rate of ~4-5 solar masses per year, consistent with the estimates from the UV and its H-alpha luminosity. This large FIR luminosity is consistent with that of a starburst or a Luminous Infrared Galaxy (LIRG), but together with a very massive and old population of stars that dominate the energy output of the galaxy. If the dust is at one temperature, the ratio of 70 to 160 micron fluxes indicate that the dust emitting mid-IR in this source is somewhat hotter than the dust emitting mid-IR in two BCGs at higher-redshift (z~0.2-0.3) and higher FIR luminosities observed earlier by Spitzer, in clusters Abell 1835 and Zwicky 3146.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا