ترغب بنشر مسار تعليمي؟ اضغط هنا

We demonstrate numerically that for the strongly anisotropic homometallic S=2 canted single-chain magnet described by the quantum antiferromagnetic Heisenberg model the correlation energy and exchange coupling constant can be directly estimated from the in-field-magnetization profile found along the properly selected crystallographic direction. In the parameter space defined by the spherical angles (phi, theta) determining the axes orientation, four regions are identified with different sequences of the characteristic field-dependent magnetization profiles representing the antiferromagnetic, metamagnetic and weak ferromagnetic type behavior. These sequences provide a criterion for the applicability of the anisotropic quantum Heisenberg model to a given experimental system. Our analysis shows that the correlation energy decreases linearly with field and vanishes for a given value H_{cr} which defines a special coordinates in the metamagnetic profile relevant for the zero-field correlation energy and magnetic coupling. For the single-chain magnet formed by the strongly anisotropic manganese(III) acetate meso-tetraphenylporphyrin complexes coupled to the phenylphosphinate ligands, the experimental metamagnetic-type magnetization curve in the c direction yields an accurate estimate of the values of correlation energy Delta_{xi}/k_B = 7.93 K and exchange coupling J/k_B=1.20 K.
The excess adsorption $Gamma $ in two-dimensional Ising strips $(infty times L)$ subject to identical boundary fields, at both one-dimensional surfaces decaying in the orthogonal direction $j$ as $-h_1j^{-p}$, is studied for various values of $p$ and along various thermodynamic paths below the critical point by means of the density-matrix renormalization-group method. The crossover behavior between the complete wetting and critical adsorption regimes, occurring in semi-infinite systems, are strongly influenced by confinement effects. Along isotherms $T=const$ the asymptotic power law dependences on the external bulk field, which characterize these two regimes, are undercut by capillary condensation. Along the pseudo first-order phase coexistence line of the strips, which varies with temperature, we find a broad crossover regime where both the thickness of the wetting film and $Gamma$ increase as function of the reduced temperature $tau$ but do not follow any power law. Above the wetting temperature the order parameter profiles are not slab-like but exhibit wide interfacial variations and pronounced tails. Inter alia, our explicit calculations demonstrate that, contrary to opposite claims by Kroll and Lipowsky [Phys. Rev. B {bf 28}, 5273 (1983)], for $p=2$ critical wetting transitions do exist and we determine the corresponding wetting phase diagram in the $(h_1,T)$ plane.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا