ترغب بنشر مسار تعليمي؟ اضغط هنا

77 - M.D. Reed , A. Baran , A.C. Quint 2011
We investigate the possibility of nearly-equally spaced periods in 13 hot subdwarf B (sdB) stars observed with the Kepler spacecraft and one observed with CoRoT. Asymptotic limits for gravity (g-)mode pulsations provide relationships between equal pe riod spacings of modes with differing degrees and relationships between periods of the same radial order but differing degrees. Period transforms, Kolmogorov-Smirnov tests, and linear least-squares fits have been used to detect and determine the significance of equal period spacings. We have also used Monte Carlo simulations to estimate the likelihood that the detected spacings could be produced randomly. Period transforms for nine of the Kepler stars indicate ell=1 period spacings, with five also showing peaks for ell=2 modes. 12 stars indicate ell=1 modes using the Kolmogorov-Smirnov test while another shows solely ell=2 modes. Monte Carlo results indicate that equal period spacings are significant in 10 stars above 99% confidence and 13 of the 14 are above 94% confidence. For 12 stars, the various methods find consistent regular period spacing values to within the errors, two others show some inconsistencies, likely caused by binarity, and the last has significant detections but the mode assignment disagrees between methods. We find a common ell=1 period spacing spanning a range from 231 to 272 s allowing us to correlate pulsation modes with 222 periodicities and that the ell=2 period spacings are related to the ell=1 spacings by the asymptotic relationship $1/sqrt{3}$. We briefly discuss the impact of equal period spacings which indicate low-degree modes with a lack of significant mode trappings.
We present the results of a multisite photometric campaign on the pulsating sdB star Balloon 090100001. The star is one of the two known hybrid hot subdwarfs with both long- and short-period oscillations. The campaign involved eight telescopes with t hree obtaining UBVR data, four B-band data, and one Stromgren uvby photometry. The campaign covered 48 nights, providing a temporal resolution of 0.36microHz with a detection threshold of about 0.2mmag in B-filter data. Balloon 090100001 has the richest pulsation spectrum of any known pulsating subdwarf B star and our analysis detected 114 frequencies including 97 independent and 17 combination ones. The strongest mode (f_1) in the 2.8mHz region is most likely radial while the remaining ones in this region form two nearly symmetric multiplets: a triplet and quintuplet, attributed to rotationally split ell=1 and 2 modes, respectively. We find clear increases of splitting in both multiplets between the 2004 and 2005 observing campaigns, amounting to 15% on average. The observed splittings imply that the rotational rate in Bal09 depends on stellar latitude and is the fastest on the equator. We use a small grid of models to constrain the main mode (f_1), which most likely represents the radial fundamental pulsation. The groups of p-mode frequencies appear to lie in the vicinity of consecutive radial overtones, up to the third one. Despite the large number of g-mode frequencies observed, we failed to identify them, most likely because of the disruption of asymptotic behaviour by mode trapping. The observed frequencies were not, however, fully exploited in terms of seismic analysis which should be done in the future with a larger grid of reliable evolutionary models of hot subdwarfs.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا