ترغب بنشر مسار تعليمي؟ اضغط هنا

This report reviews the study of open heavy-flavour and quarkonium production in high-energy hadronic collisions, as tools to investigate fundamental aspects of Quantum Chromodynamics, from the proton and nucleus structure at high energy to deconfine ment and the properties of the Quark-Gluon Plasma. Emphasis is given to the lessons learnt from LHC Run 1 results, which are reviewed in a global picture with the results from SPS and RHIC at lower energies, as well as to the questions to be addressed in the future. The report covers heavy flavour and quarkonium production in proton-proton, proton-nucleus and nucleus-nucleus collisions. This includes discussion of the effects of hot and cold strongly interacting matter, quarkonium photo-production in nucleus-nucleus collisions and perspectives on the study of heavy flavour and quarkonium with upgrades of existing experiments and new experiments. The report results from the activity of the SaporeGravis network of the I3 Hadron Physics programme of the European Union 7th Framework Programme.
We report on the creation of a database for quarkonium and open heavy-flavour production in hadronic collisions. This database, made as a collaboration between HepData and the ReteQuarkonii network of the integrating activity I3HP2 of the 7th Framewo rk Programme, provides an up-to-date review on quarkonia and open heavy-flavour existing data. We first present the physics motivation for this project, which is connected to the aim of the ReteQuarkonii network, studies of open heavy-flavour hadrons and quarkonia in nucleus-nucleus collisions. Then we give a general overview of the database and describe the HepData database for particle physics, which is the framework of the quarkonia database. Finally we describe the functionalities of the database with as example the comparison of the production cross section for the J/$psi$ meson at different energies.
We briefly review the predictions of the thermal model for hadron production in comparison to latest data from RHIC and extrapolate the calculations to LHC energy. Our main emphasis is to confront the model predictions with the recently released data from ALICE at the LHC. This comparison reveals an apparent anomaly for protons and anti-protons which we discuss briefly. We also demonstrate that our statistical hadronization predictions for J/$psi$ production agree very well with the most recent LHC data, lending support to the picture in which there is complete charmonium melting in the quark-gluon plasma (QGP) followed by statistical generation of J/$psi$ mesons at the phase boundary.
Using the large acceptance apparatus FOPI, we study central and semi-central collisions in the reactions (energies in A GeV are given in parentheses): 40Ca+40Ca (0.4, 0.6, 0.8, 1.0, 1.5, 1.93), 58Ni+58Ni (0.15, 0.25, 0.4), 96Ru+96Ru (0.4, 1.0, 1.5), 96Zr+96Zr (0.4, 1.0, 1.5), 129Xe+CsI (0.15, 0.25, 0.4), 197Au+197Au (0.09, 0.12, 0.15, 0.25, 0.4, 0.6, 0.8, 1.0, 1.2, 1.5). The observables include directed and elliptic flow. The data are compared to earlier data where possible and to transport model simulations. A stiff nuclear equation of state is found to be incompatible with the data. Evidence for extra-repulsion of neutrons in compressed asymmetric matter is found.
Using the large acceptance apparatus FOPI, we study central collisions in the reactions (energies in A GeV are given in parentheses): 40Ca+40Ca (0.4, 0.6, 0.8, 1.0, 1.5, 1.93), 58Ni+58Ni (0.15, 0.25, 0.4), 96Ru+96Ru (0.4, 1.0, 1.5), 96Zr+96Zr (0.4, 1 .0, 1.5), 129Xe+CsI (0.15, 0.25, 0.4), 197Au+197Au (0.09, 0.12, 0.15, 0.25, 0.4, 0.6, 0.8, 1.0, 1.2, 1.5). The observables include cluster multiplicities, longitudinal and transverse rapidity distributions and stopping, and radial flow. The data are compared to earlier data where possible and to transport model simulations.
Particle production in high-energy collisions is often addressed within the framework of the thermal (statistical) model. We present a method to calculate the canonical partition function for the hadron resonance gas with exact conservation of the ba ryon number, strangeness, electric charge, charmness and bottomness. We derive an analytical expression for the partition function which is represented as series of Bessel functions. Our results can be used directly to analyze particle production yields in elementary and in heavy ion collisions. We also quantify the importance of quantum statistics in the calculations of the light particle multiplicities in the canonical thermal model of the hadron resonance gas.
Systematic measurements on the rate capability of thin MWPCs operated in Xenon, Argon and Neon mixtures using CO2 as UV-quencher are presented. A good agreement between data and existing models has been found, allowing us to present the rate capabili ty of MWPCs in a comprehensive way and ultimately connect it with the mobilities of the drifting ions.
We present a comprehensive analysis of hadron production in e+e- collisions at different center-of-mass energies in the framework of the statistical model of the hadron resonance gas. The model is formulated in the canonical ensemble with exact conse rvation of all relevant quantum numbers. The parameters of the underlying model were determined using a fit to the average multiplicities of the latest measurements at $sqrt{s}$ = 10, 29-35, 91 and 130-200 GeV. The results demonstrate that, within the accuracy of the experiments, none of the data sets is satisfactorily described with this approach, calling into question the notion that particle production in e+e- collisions is thermal in origin.
We analyze recently compiled data on the production of open heavy flavor hadrons and quarkonia in e+e- as well as pp and p-nucleus collisions in terms of the statistical hadronization model. Within this approach the production of open heavy flavor ha drons is well described with parameters deduced from a thermal analysis of light flavor hadron production. In contrast, quarkonium production in such collisions cannot be described in this framework. We point out the relevance of this finding for our understanding of quarkonium production in ultra-relativistic nucleus-nucleus collisions.
We present results of a two-pion correlation analysis performed with the Au+Pb collision data collected by the upgraded CERES experiment in the fall of 2000. The analysis was done in bins of the reaction centrality and the pion azimuthal emission ang le with respect to the reaction plane. The pion source, deduced from the data, is slightly elongated in the direction perpendicular to the reaction plane, similarly as was observed at the AGS and at RHIC.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا