ترغب بنشر مسار تعليمي؟ اضغط هنا

258 - E. Rovilos 2013
We use a combination of the XMM-Newton serendipitous X-ray survey with the optical SDSS, and the infrared WISE all-sky survey in order to check the efficiency of the low X-ray to infrared luminosity selection method in finding heavily obscured AGN. W e select sources in the 2-8 keV X-ray band which have a redshift determination in the SDSS catalogue. We match this sample with the WISE catalogue, and fit the SEDs of the 2844 sources which have three, or more, photometric data-points in the infrared. We then select the heavily obscured AGN candidates by comparing their 12 micron AGN luminosity to the observed 2-10 keV X-ray luminosity and their expected intrinsic relation. With this approach we find 20 candidates, and we examine their X-ray and optical spectra. Of the 20 initial candidates, we find nine (64%; out of the 14, for which X-ray spectra could be fit) based on the X-ray spectra, and seven (78%; out of the nine detected spectroscopically in the SDSS) based on the [OIII] line fluxes. Combining all criteria, we determine the final number of heavily obscured AGN to be 12-19, and the number of Compton-thick AGN to be 2-5, showing that the method is reliable in finding obscured AGN, but not Compton-thick. However those numbers are smaller than what would be expected from X-ray background population synthesis models, which demonstrates how the optical-infrared selection and the scatter of the L_x-L_MIR relation introduced by observational constraints limit the efficiency of the method. Finally, we test popular obscured AGN selection methods based on mid-infrared colours, and find that the probability of an AGN to be selected by its mid-infrared colours increases with the X-ray luminosity. However, a selection scheme based on a relatively low X-ray luminosity and mid-infrared colours characteristic of QSOs would not select ~25% of the heavily obscured AGN of our sample. (abridged)
This paper investigates what constraints can be placed on the fraction of Compton-thick (CT) AGN in the Universe from the modeling of the spectrum of the diffuse X-ray background (XRB). We present a model for the synthesis of the XRB that uses as inp ut a library of AGN X-ray spectra generated by the Monte Carlo simulations described by Brightman & Nandra. This is essential to account for the Compton scattering of X-ray photons in a dense medium and the impact of that process on the spectra of obscured AGN. We identify a small number of input parameters to the XRB synthesis code which encapsulate the minimum level of uncertainty in reconstructing the XRB spectrum. These are the power-law index and high energy cutoff of the intrinsic X-ray spectra of AGN, the level of the reflection component in AGN spectra and the fraction of CT AGN in the Universe. We then map the volume of the space allowed to these parameters by current observations of the XRB spectrum in the range 3-100 keV. One of the least constrained parameters is the fraction of CT AGN. Statistically acceptable fits to the XRB spectrum at the 68% confidence level can be obtained for CT fractions in the range 5-50%. This is because of degeneracies among input parameters to the XRB synthesis code and uncertainties in the modeling of AGN spectra (e.g. reflection). The most promising route for constraining the fraction of CT AGN in the Universe is via the direct detection of those sources in high energy (>10keV) surveys. It is shown that the observed fraction of CT sources identified in the SWIFT/BAT survey, limits the intrinsic fraction of CT AGN, at least at low redshift, to 10-20% (68% confidence level). We also make predictions on the number density of CT sources that current and future X-ray missions are expected to discover. Testing those predictions will constrain the intrinsic fraction of CT AGN as a function of redshift.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا