ترغب بنشر مسار تعليمي؟ اضغط هنا

We report evidence for the existence of a supercurrent of magnons in a magnon Bose-Einstein condensate prepared in a room temperature yttrium-iron-garnet magnetic film and subject to a thermal gradient. The magnon condensate is formed in a parametric ally populated magnon gas, and its temporal evolution is studied by time-, frequency- and wavector-resolved Brillouin light scattering spectroscopy. It has been found that local heating in the focal point of a probing laser beam enhances the temporal decrease in the density of the freely evolving magnon condensate after the termination of the pumping pulse, but it does not alter the relaxation dynamics of the gaseous magnon phase. This phenomenon is understood as the appearance of a magnon supercurrent within the condensate due to a temperature- and, consequently, magnetisation-gradient induced phase gradient in the condensate wave function.
We present temporal evolution of the spin Seebeck effect in a YIG|Pt bilayer system. Our findings reveal that this effect is a sub-microseconds fast phenomenon governed by the temperature gradient and the thermal magnons diffusion in the magnetic mat erials. A comparison of experimental results with the thermal-driven magnon-diffusion model shows that the temporal behavior of this effect depends on the time development of the temperature gradient in the vicinity of the YIG|Pt interface. The effective thermal-magnon diffusion length for YIG|Pt systems is estimated to be around 700nm.
The spectral distribution of parametrically excited dipole-exchange magnons in an in-plane magnetized epitaxial film of yttrium-iron garnet was studied by means of frequency- and wavevector-resolved Brillouin light scattering spectroscopy. The experi ment was performed in a parallel pumping geometry where an exciting microwave magnetic field was parallel to the magnetizing field. It was found that for both dipolar and exchange spectral areas parallel pumping excites the lowest volume magnon modes propagating in the film plane perpendicularly to the magnetization direction. In order to interpret the experimental observations, we used a microscopic Heisenberg model that includes exchange as well as dipole-dipole interactions to calculate the magnon spectrum and construct the eigenstates. As proven in our calculations, the observed magnons are characterized by having the highest possible ellipticity of precession which suggests the lowest threshold of parametric generation. Applying different pumping powers we observe modifications in the magnon spectrum that are described theoretically by a softening of the spin stiffness.
Conversion of traveling magnons into an electron carried spin current is demonstrated in a time resolved experiment using a spatially separated inductive spin-wave source and an inverse spin Hall effect (ISHE) detector. A short spin-wave packet is ex cited in a yttrium-iron garnet (YIG) waveguide by a microwave signal and is detected at a distance of 3 mm by an attached Pt layer as a delayed ISHE voltage pulse. The delay in the detection appears due to the finite spin-wave group velocity and proves the magnon spin transport. The experiment suggests utilization of spin waves for the information transfer over macroscopic distances in spintronic devices and circuits.
Transmission of microwave spin waves through a microstructured magnonic crystal in the form of a permalloy waveguide of a periodically varying width was studied experimentally and theoretically. The spin wave characteristics were measured by spatiall y-resolved Brillouin light scattering microscopy. A rejection frequency band was clearly observed. The band gap frequency was controlled by the applied magnetic field. The measured spin-wave intensity as a function of frequency and propagation distance is in good agreement with a model calculation.
The operational characteristics of a magnonic crystal, which was fabricated as an array of shallow grooves etched on a surface of a magnetic film, were compared for magnetostatic surface spin waves and backward volume magnetostatic spin waves. In bot h cases the formation of rejection frequency bands was studied as a function of the grooves depth. It has been found that the rejection of the volume wave is considerably larger than of the surface one. The influences of the nonreciprocity of the surface spin waves as well as of the scattering of the lowest volume spin-wave mode into higher thickness volume modes on the rejection efficiency are discussed.
One-dimensional magnonic crystals have been implemented as gratings of shallow grooves chemically etched into the surface of yttrium-iron garnet films. Scattering of backward volume magnetostatic spin waves from such structures is investigated experi mentally and theoretically. Well-defined rejection frequency bands are observed in transmission characteristics of the magnonic crystals. The loss inserted by the gratings and the rejections bands bandwidths are studied as a function of the film thickness, the groove depth, the number of grooves, and the groove width. The experimental data are well described by a theoretical model based on the analogy of a spin-wave film-waveguide with a microwave transmission line. Our study shows that magnonic crystals with required operational characteristics can be engineered by adjusting these geometrical parameters.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا