ترغب بنشر مسار تعليمي؟ اضغط هنا

We find a systematic reappearance of massive Dirac features at the edges of consecutive minibands formed at magnetic fields B_{p/q}= pphi_0/(qS) providing rational magnetic flux through a unit cell of the moire superlattice created by a hexagonal sub strate for electrons in graphene. The Dirac-type features in the minibands at B=B_{p/q} determine a hierarchy of gaps in the surrounding fractal spectrum, and show that these minibands have topological insulator properties. Using the additional $q$-fold degeneracy of magnetic minibands at B_{p/q}, we trace the hierarchy of the gaps to their manifestation in the form of incompressible states upon variation of the carrier density and magnetic field.
Using a general symmetry-based approach, we provide a classification of generic miniband structures for electrons in graphene placed on substrates with the hexagonal Bravais symmetry. In particular, we identify conditions at which the first moire min iband is separated from the rest of the spectrum by either one or a group of three isolated mini Dirac points and is not obscured by dispersion surfaces coming from other minibands. In such cases the Hall coefficient exhibits two distinct alternations of its sign as a function of charge carrier density.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا