ترغب بنشر مسار تعليمي؟ اضغط هنا

The electron-cyclotron maser instability is widespread in the Universe, producing, e.g., radio emission of the magnetized planets and cool substellar objects. Diagnosing the parameters of astrophysical radio sources requires comprehensive nonlinear s imulations of the radiation process. We simulate the electron-cyclotron maser instability in a very low-beta plasma. The model used takes into account the radiation escape from the source region and the particle flow through this region. We developed a kinetic code to simulate the time evolution of an electron distribution in a radio emission source. The model includes the terms describing the particle injection to and escape from the emission source region. The spatial escape of the emission from the source is taken into account by using a finite amplification time. The unstable electron distribution of the horseshoe type is considered. A number of simulations were performed for different parameter sets typical of the magnetospheres of planets and ultracool dwarfs. The generated emission (corresponding to the fundamental extraordinary mode) has a frequency close to the electron cyclotron frequency and propagates across the magnetic field. Shortly after the onset of a simulation, the electron distribution reaches a quasi-stationary state. If the emission source region is relatively small, the resulting electron distribution is similar to that of the injected electrons; the emission intensity is low. In larger sources, the electron distribution may become nearly flat due to the wave-particle interaction, while the conversion efficiency of the particle energy flux into waves reaches 10-20%. We found good agreement of our model with the in situ observations in the source regions of auroral radio emissions of the Earth and Saturn. The expected characteristics of the electron distributions in the magnetospheres of ultracool dwarfs were obtained.
Recently, a number of ultracool dwarfs have been found to produce periodic radio bursts with high brightness temperature and polarization degree; the emission properties are similar to the auroral radio emissions of the magnetized planets of the Sola r System. We simulate the dynamic spectra of radio emission from ultracool dwarfs. The emission is assumed to be generated due to the electron-cyclotron maser instability. We consider two source models: the emission caused by interaction with a satellite and the emission from a narrow sector of active longitudes; the stellar magnetic field is modeled by a tilted dipole. We have found that for the dwarf TVLM 513-46546, the model of the satellite-induced emission is inconsistent with the observations. On the other hand, the model of emission from an active sector is able to reproduce qualitatively the main features of the radio light curves of this dwarf; the magnetic dipole seems to be highly tilted (by about 60 degrees) with respect to the rotation axis.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا