ترغب بنشر مسار تعليمي؟ اضغط هنا

Using typical experimental techniques it is difficult to separate the effects of carrier density and disorder on the superconducting transition in two dimensions. Using a simple fabrication procedure based on metal layer dewetting, we have produced g raphene sheets decorated with a non-percolating network of nanoscale tin clusters. These metal clusters both efficiently dope the graphene substrate and induce long-range superconducting correlations. This allows us to study the superconducting transition at fixed disorder and variable carrier concentration. We find that despite structural inhomogeneity on mesoscopic length scales (10-100 nm), this material behaves electronically as a homogenous dirty superconductor. Our simple self-assembly method establishes graphene as an ideal tunable substrate for studying induced two-dimensional electronic systems at fixed disorder and our technique can readily be extended to other order parameters such as magnetism.
218 - K. Jensen , Kwanpyo Kim , A. Zettl 2008
Mechanical resonators are widely used as inertial balances to detect small quantities of adsorbed mass through shifts in oscillation frequency[1]. Advances in lithography and materials synthesis have enabled the fabrication of nanoscale mechanical re sonators[2, 3, 4, 5, 6], which have been operated as precision force[7], position[8, 9] and mass sensors[10, 11, 12, 13, 14, 15]. Here we demonstrate a room-temperature, carbon-nanotube-based nanomechanical resonator with atomic mass resolution. This device is essentially a mass spectrometer with a mass sensitivity of 1.3 times 10^-25 kg Hz^-1/2 or, equivalently, 0.40 gold atoms Hz^-1/2. Using this extreme mass sensitivity, we observe atomic mass shot noise, which is analogous to the electronic shot noise[16, 17] measured in many semiconductor experiments. Unlike traditional mass spectrometers, nanomechanical mass spectrometers do not require the potentially destructive ionization of the test sample, are more sensitive to large molecules, and could eventually be incorporated on a chip.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا