ترغب بنشر مسار تعليمي؟ اضغط هنا

162 - H. Li , T. T. Zhang , A. Said 2020
The Kitaev quantum spin liquid epitomizes an entangled topological state, for which two flavors of fractionalized low-energy excitations are predicted: the itinerant Majorana fermion and the Z2 gauge flux. Detection of these excitations remains chall enging, because of their fractional quantum numbers and non-locality. It was proposed recently that fingerprints of fractional excitations are encoded in the phonon spectra of Kitaev quantum spin liquids through a novel fractional-excitation-phonon coupling. Here, we uncover this effect in $alpha$-RuCl3 using inelastic X-ray scattering with meV resolution. At high temperature, we discover interlaced optical phonons intercepting a transverse acoustic phonon between 3 and 7 meV. Upon decreasing temperature, the optical phonons display a large intensity enhancement near the Kitaev energy, JK~8 meV, that coincides with a giant acoustic phonon softening near the Z2 gauge flux energy scale. This fractional excitation induced phonon anomalies uncover the key ingredient of the quantum thermal Hall effect in $alpha$-RuCl3 and demonstrates a proof-of-principle method to detect fractional excitations in topological quantum materials.
Topological states in quantum materials are defined by non-trivial topological invariants, such as the Chern number, which are properties of their bulk wave functions. A remarkable consequence of topological wave functions is the emergence of edge mo des, a phenomenon known as bulk-edge correspondence, that gives rise to quantized or chiral physical properties. While edge modes are widely presented as signatures of non-trivial topology, how bulk wave functions can manifest explicitly topological properties remains unresolved. Here, using high-resolution inelastic x-ray spectroscopy (IXS) combined with first principles calculations, we report experimental signatures of chiral wave functions in the bulk phonon spectrum of BaPtGe, which we show to host a previously undiscovered twofold degenerate quadruple Weyl node. The chirality of the degenerate phononic wave function yields a non-trivial phonon dynamical structure factor, S(Q,$omega$), along high-symmetry directions, that is in excellent agreement with numerical and model calculations. Our results establish IXS as a powerful tool to uncover topological wave functions, providing a key missing ingredient in the study of topological quantum matter.
We investigate the origin of the depolarization rates in ultrathin adsorbate-stabilized ferroelectric wires. By applying density functional theory calculations and analytic modeling, we demonstrate that the depolarization results from the leakage of charges stored at the surface adsorbates, which play an important role in the polarization stabilization. The depolarization speed varies with thickness and temperature, following several complex trends. A comprehensive physical model is presented, in which quantum tunneling, Schottky emission and temperature dependent electron mobility are taken into consideration. This model simulates experimental results, validating the physical mechanism. We also expect that this improved tunneling-Schottky emission model could be applied to predict the retention time of polarization and the leakage current for various ferroelectric materials with different thicknesses and temperatures.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا