ترغب بنشر مسار تعليمي؟ اضغط هنا

We consider the production of charmed baryons and mesons in the proton-antiproton binary reactions at the energies of the future $bar{P}$ANDA experiment. To describe these processes in terms of hadronic interaction models, one needs strong couplings of the initial nucleons with the intermediate and final charmed hadrons. Similar couplings enter the models of binary reactions with strange hadrons. For both charmed and strange hadrons we employ the strong couplings and their ratios calculated from QCD light-cone sum rules. In this method finite masses of $c$ and $s$ quarks are taken into account. Employing the Kaidalovs quark-gluon string model with Regge poles and adjusting the normalization of the amplitudes in this model to the calculated strong couplings, we estimate the production cross section of charmed hadrons. For $pbar{p}to Lambda_cbar{Lambda}_c$ it can reach several tens of $nb$ at $p_{lab}= 15 {GeV}$, whereas the cross sections of $Sigma_c$ and $D$ pair production are predicted to be smaller.
We derive QCD light-cone sum rules for the hadronic matrix elements of the heavy baryon transitions to nucleon. In the correlation functions the $Lambda_c,Sigma_c$ and $Lambda_b$ -baryons are interpolated by three-quark currents and the nucleon distr ibution amplitudes are used. To eliminate the contributions of negative parity heavy baryons, we combine the sum rules obtained from different kinematical structures. The results are then less sensitive to the choice of the interpolating current. We predict the $Lambda_{b}to p$ form factor and calculate the widths of the $Lambda_{b}to pell u_l$ and $Lambda_{b}to p pi$ decays. Furthermore, we consider double dispersion relations for the same correlation functions and derive the light-cone sum rules for the $Lambda_cND^{(*)}$ and $Sigma_cND^{(*)}$ strong couplings. Their predicted values can be used in the models of charm production in $pbar{p}$ collisions.
We calculate the long-distance effect generated by the four-quark operators with $c$-quarks in the $Bto K^{(*)} ell^+ell^-$ decays. At the lepton-pair invariant masses far below the $bar{c}c$-threshold, $q^2ll 4m_c^2$, we use OPE near the light-cone. The nonfactorizable soft-gluon emission from $c$-quarks is cast in the form of a nonlocal effective operator. The $Bto K^{(*)}$ matrix elements of this operator are calculated from the QCD light-cone sum rules with the $B$-meson distribution amplitudes. As a byproduct, we also predict the charm-loop contribution to $Bto K^*gamma$ beyond the local-operator approximation. To describe the charm-loop effect at large $q^2$, we employ the hadronic dispersion relation with $psi=J/psi,psi (2S), ...$ contributions, where the measured $ Bto K^{(*)}psi $ amplitudes are used as inputs. Matching this relation to the result of QCD calculation reveals a destructive interference between the $J/psi$ and $psi(2S)$ contributions. The resulting charm-loop effect is represented as a $q^2$-dependent correction $Delta C_9(q^2)$ to the Wilson coefficient $C_9$. Within uncertainties of our calculation, at $q^2$ below the charmonium region the predicted ratio $Delta C_9(q^2)/C_9$ is $leq 5% $ for $Bto K ell^+ell^-$, but can reach as much as 20% for $Bto K^*ell^+ell^-$, the difference being mainly caused by the soft-gluon contribution.
70 - A. Khodjamirian 2009
I discuss recent applications of QCD light-cone sum rules to various form factors of pseudoscalar mesons. In this approach both soft and hard contributions to the form factors are taken into account. Combining QCD calculation with the analyticity of the form factors, one enlarges the region of accessible momentum transfers.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا