ترغب بنشر مسار تعليمي؟ اضغط هنا

The ENUBET ERC project (2016-2021) is studying a facility based on a narrow band beam capable of constraining the neutrino fluxes normalization through the monitoring of the associated charged leptons in an instrumented decay tunnel. A key element of the project is the design and optimization of the hadronic beamline. In this proceeding we present progress on the studies of the proton extraction schemes. We also show a realistic implementation and simulation of the beamline.
469 - F. Acerbi , A. Berra , M. Bonesini 2020
The uncertainty in the initial neutrino flux is the main limitation for a precise determination of the absolute neutrino cross section. The ERC funded ENUBET project (2016-2021) is studying a facility based on a narrow band beam to produce an intense source of electron neutrinos with a ten-fold improvement in accuracy. Since March 2019 ENUBET is also a Neutrino Platform experiment at CERN: NP06/ENUBET. A key element of the project is the instrumentation of the decay tunnel to monitor large angle positrons produced together with $ u_e$ in the three body decays of kaons ($K_{e3}$) and to discriminate them from neutral and charged pions. The need for an efficient and high purity e/$pi$ separation over a length of several meters, and the requirements for fast response and radiation hardness imposed by the harsh beam environment, suggested the implementation of a longitudinally segmented Fe/scintillator calorimeter with a readout based on WLS fibers and SiPM detectors. An extensive experimental program through several test beam campaigns at the CERN-PS T9 beam line has been pursued on calorimeter prototypes, both with a shashlik and a lateral readout configuration. The latter, in which fibers collect the light from the side of the scintillator tiles, allows to place the light sensors away from the core of the calorimeter, thus reducing possible irradiation damages with respect to the shashlik design. This contribution will present the achievements of the prototyping activities carried out, together with irradiation tests made on the Silicon Photo-Multipliers. The results achieved so far pin down the technology of choice for the construction of the 3 m long demonstrator that will take data in 2021.
Silicon Photomultipliers with cell-pitch ranging from 12 $mu$m to 20 $mu$m were tested against neutron irradiation at moderate fluences to study their performance for calorimetric applications. The photosensors were developed by FBK employing the RGB -HD technology. We performed irradiation tests up to $2 times 10^{11}$ n/cm$^2$ (1 MeV eq.) at the INFN-LNL Irradiation Test facility. The SiPMs were characterized on-site (dark current and photoelectron response) during and after irradiations at different fluences. The irradiated SiPMs were installed in the ENUBET compact calorimetric modules and characterized with muons and electrons at the CERN East Area facility. The tests demonstrate that both the electromagnetic response and the sensitivity to minimum ionizing particles are retained after irradiation. Gain compensation can be achieved increasing the bias voltage well within the operation range of the SiPMs. The sensitivity to single photoelectrons is lost at $sim 10^{10}$ n/cm$^2$ due to the increase of the dark current.
453 - M.Pari , G. Ballerini , A. Berra 2018
We summarize in this paper the detector R&D performed in the framework of the ERC ENUBET Project. We discuss in particular the latest results on longitudinally segmented shashlik calorimeters and the first HEP application of polysiloxane-based scintillators.
The ENUBET facility is a proposed narrow band neutrino beam where lepton production is monitored at single particle level in the instrumented decay tunnel. This facility addresses simultaneously the two most important challenges for the next generati on of cross section experiments: a superior control of the flux and flavor composition at source and a high level of tunability and precision in the selection of the energy of the outcoming neutrinos. We report here the latest results in the development and test of the instrumentation for the decay tunnel. Special emphasis is given to irradiation tests of the photo-sensors performed at INFN-LNL and CERN in 2017 and to the first application of polysiloxane-based scintillators in high energy physics.
An iron- plastic-scintillator shashlik calorimeter with a 4.3 $X_0$ longitudinal segmentation was tested in November 2016 at the CERN East Area facility with charged particles up to 5 GeV. The performance of this detector in terms of electron energy resolution, linearity, response to muons and hadron showers are presented in this paper and compared with simulation. Such a fine-grained longitudinal segmentation is achieved using a very compact light readout system developed by the SCENTT and ENUBET Collaborations, which is based on fiber-SiPM coupling boards embedded in the bulk of the detector. We demonstrate that this system fulfills the requirements for neutrino physics applications and discuss performance and additional improvements.
The longitudinal segmentation of shashlik calorimeters is challenged by dead zones and non-uniformities introduced by the light collection and readout system. This limitation can be overcome by direct fiber-photosensor coupling, avoiding routing and bundling of the wavelength shifter fibers and embedding ultra-compact photosensors (SiPMs) in the bulk of the calorimeter. We present the first experimental test of this readout scheme performed at the CERN PS-T9 beamline in 2015 with negative particles in the 1-5~GeV energy range. In this paper, we demonstrate that the scheme does not compromise the energy resolution and linearity compared with standard light collection and readout systems. In addition, we study the performance of the calorimeter for partially contained charged hadrons to assess the $e/pi$ separation capability and the response of the photosensors to direct ionization.
Absolute neutrino cross section measurements at the GeV scale are ultimately limited by the knowledge of the initial $ u$ flux. In order to evade such limitation and reach the accuracy that is needed for precision oscillation physics ($sim 1$%), subs tantial advances in flux measurement techniques are requested. We discuss here the possibility of instrumenting the decay tunnel to identify large-angle positrons and monitor $ u_e$ production from $K^+ rightarrow e^+ u_e pi^0$ decays. This non conventional technique opens up opportunities to measure the $ u_e$ CC cross section at the per cent level in the energy range of interest for DUNE/HK. We discuss the progress in the simulation of the facility (beamline and instrumentation) and the ongoing R&D.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا