ترغب بنشر مسار تعليمي؟ اضغط هنا

Using polarized neutron reflectometry (PNR), we observe an induced magnetization of 75$pm$ 25 kA/m at 10 K in a La$_{0.7}$Sr$_{0.3}$MnO$_3$ (LSMO)/BiFeO$_3$ superlattice extending from the interface through several atomic layers of the BiFeO$_3$ (BFO ). The induced magnetization in BFO is explained by density functional theory, where the size of bandgap of BFO plays an important role. Considering a classical exchange field between the LSMO and BFO layers, we further show that magnetization is expected to extend throughout the BFO, which provides a theoretical explanation for the results of the neutron scattering experiment.
The well-known classical nucleation theory (CNT) for the free energy barrier towards formation of a nucleus of critical size of the new stable phase within the parent metastable phase fails to take into account the influence of other metastable phase s having density/order intermediate between the parent metastable phase and the final stable phase. This lacuna can be more serious than capillary approximation or spherical shape assumption made in CNT. This issue is particularly significant in ice nucleation because liquid water shows rich phase diagram consisting of two (high and low density) liquid phases in supercooled state. The explanations of thermodynamic and dynamic anomalies of supercooled water often invoke the possible influence of a liquid-liquid transition between two metastable liquid phases. To investigate both the role of thermodynamic anomalies and presence of distinct metastable liquid phases in supercooled water on ice nucleation, we employ density functional theoretical approach to find nucleation free energy barrier in different regions of phase diagram. The theory makes a number of striking predictions, such as a dramatic lowering of nucleation barrier due to presence of a metastable intermediate phase and crossover in the dependence of free energy barrier on temperature near liquid-liquid critical point. These predictions can be tested by computer simulations as well as by controlled experiments.
Solid-solid collapse transition in open framework structures is ubiquitous in nature. The real difficulty in understanding detailed microscopic aspects of such transitions in molecular systems arises from the interplay between different energy and le ngth scales involved in molecular systems, often mediated through a solvent. In this work we employ Monte Carlo (MC) simulations to study the collapse transition in a model molecular system interacting via both isotropic as well as anisotropic interactions having different length and energy scales. The model we use is known as Mercedes-Benz (MB) which for a specific set of parameters sustains three solid phases: honeycomb, oblique and triangular. In order to study the temperature induced collapse transition, we start with a metastable honeycomb solid and induce transition by heating. High density oblique solid so formed has two characteristic length scales corresponding to isotropic and anisotropic parts of interaction potential. Contrary to the common believe and classical nucleation theory, interestingly, we find linear strip-like nucleating clusters having significantly different order and average coordination number than the bulk stable phase. In the early stage of growth, the cluster grows as linear strip followed by branched and ring-like strips. The geometry of growing cluster is a consequence of the delicate balance between two types of interactions which enables the dominance of stabilizing energy over the destabilizing surface energy. The nuclei of stable oblique phase are wetted by intermediate order particles which minimizes the surface free energy. We observe different pathways for pressure and temperature induced transitions.
In many systems, nucleation of a stable solid may occur in the presence of other (often more than one) metastable phases. These may be polymorphic solids or even liquid phases. In such cases, nucleation of the solid phase from the melt may be facilit ated by the metastable phase because the latter can wet the interface between the parent and the daughter phases, even though there may be no signature of the existence of metastable phase in the thermodynamic properties of the parent liquid and the stable solid phase. Straightforward application of classical nucleation theory (CNT) is flawed here as it overestimates the nucleation barrier since surface tension is overestimated (by neglecting the metastable phases of intermediate order) while the thermodynamic free energy gap between daughter and parent phases remains unchanged. In this work we discuss a density functional theory (DFT) based statistical mechanical approach to explore and quantify such facilitation. We construct a simple order parameter dependent free energy surface that we then use in DFT to calculate (i) the order parameter profile, (ii) the overall nucleation free energy barrier and (iii) the surface tension between the parent liquid and the metastable solid and also parent liquid and stable solid phases. The theory indeed finds that the nucleation free energy barrier can decrease significantly in the presence of wetting. This approach can provide a microscopic explanation of Ostwald step rule and the well-known phenomenon of disappearing polymorphs that depends on temperature and other thermodynamic conditions. Theory reveals a diverse scenario for phase transformation kinetics some of which may be explored via modern nanoscopic synthetic methods.
Melting and freezing transitions in two dimensional systems are known to show highly unusual characteristics. Most of the earlier studies considered atomic systems; the melting behavior in two dimensional molecular solids is still largely unexplored. In order to understand the role of multiple energy and length scales present in molecular systems on nature of melting transition, here we report computer simulation studies of melting of a two dimensional Mercedes-Benz (MB) system. We find that the interplay between the strength of isotropic and anisotropic interactions can give rise to rich phase diagram. The computed solid-liquid phase diagram consists of isotropic liquid and two crystalline phases - honeycomb and oblique. In contradiction to the celebrated KTHNY theory, we observe strongly one step first order melting transitions for both the honeycomb and oblique solids. The defects in both solids and liquids near the transition are more complex compared to the atomic systems.
The quasi one-dimensional transport of Abelian and non-Abelian anyons is studied in the presence of a random topological background. In particular, we consider the quantum walk of an anyon that braids around islands of randomly filled static anyons o f the same type. Two distinct behaviours are identified. We analytically demonstrate that all types of Abelian anyons localise purely due to the statistical phases induced by their random anyonic environment. In contrast, we numerically show that non-Abelian Ising anyons do not localise. This is due to their entanglement with the anyonic environment that effectively induces dephasing. Our study demonstrates that localisation properties strongly depend on non-local topological interactions and it provides a clear distinction in the transport properties of Abelian and non-Abelian statistics.
142 - N. Hlubek , X. Zotos , S. Singh 2011
We have investigated the thermal conductivity kappa_mag of high-purity single crystals of the spin chain compound Sr2CuO3 which is considered an excellent realization of the one-dimensional spin-1/2 antiferromagnetic Heisenberg model. We find that th e spinon heat conductivity kappa_mag is strongly enhanced as compared to previous results obtained on samples with lower chemical purity. The analysis of kappa_mag allows to compute the spinon mean free path l_mag as a function of temperature. At low-temperature we find l_magsim0.5mum, corresponding to more than 1200 chain unit cells. Upon increasing the temperature, the mean free path decreases strongly and approaches an exponential decay ~1/T*exp(T*/T) which is characteristic for umklapp processes with the energy scale k_B T*. Based on Matthiesens rule we decompose l_mag into a temperature-independent spinon-defect scattering length l0 and a temperature dependent spinon-phonon scattering length l_sp(T). By comparing l_mag(T) of Sr2CuO3 with that of SrCuO2, we show that the spin-phonon interaction, as expressed by l_sp is practically the same in both systems. The comparison of the empirically derived l_sp with model calculations for the spin-phonon interaction of the one-dimensional spin-1/2 XY model yields reasonable agreement with the experimental data.
We present a calorimetric study on single crystals of Ca(Fe1-xCox)2As2 (x = 0, 0.032, 0.051, 0.056, 0.063, and 0.146). The combined first order spin-density wave/structural transition occurs in the parent CaFe2As2 compound at 168 K and gradually shif ts to lower temperature for low doping levels (x = 0.032 and x = 0.051). It is completely suppressed upon higher doping x = 0.056. Simultaneously, superconductivity appears at lower temperature with a transition temperature around Tc = 14.1 K for Ca(Fe0.937Co0.063)2As2. The phase diagram of Ca(Fe0.937Co0.063)2As2 has been derived and the upper critical field is found to be H(c) c2 = 11.5
Using polarized neutron reflectometry (PNR) we measured the neutron spin dependent reflectivity from four LaAlO3/SrTiO3 superlattices. This experiment implies that the upper limit for the magnetization induced by an 11 T magnetic field at 1.7 K is 2 emu/cm3. SQUID magnetometry of the superlattices sporadically finds an enhanced moment, possibly due to experimental artifacts. These observations set important restrictions on theories which imply a strongly enhanced magnetism at the interface between LaAlO3 and SrTiO3.
113 - H. M. Quddusi , J. Liu , S. Singh 2011
A Mn4 single-molecule magnet displays asymmetric Berry-phase interference patterns in the transverse-field (HT) dependence of the magnetization tunneling probability when a longitudinal field (HL) is present, contrary to symmetric patterns observed f or HL=0. Reversal of HL results in a reflection of the transverse-field asymmetry about HT=0, as expected on the basis of the time-reversal invariance of the spin-orbit Hamiltonian which is responsible for the tunneling oscillations. A fascinating motion of Berry-phase minima within the transverse-field magnitude-direction phase space results from a competition between noncollinear magnetoanisotropy tensors at the two distinct Mn sites.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا