Do you want to publish a course? Click here

Stochastic Inference of Surface-Induced Effects using Brownian Motion

181   0   0.0 ( 0 )
 Added by Thomas Salez
 Publication date 2020
  fields Physics
and research's language is English
 Authors Maxime Lavaud




Ask ChatGPT about the research

Brownian motion in confinement and at interfaces is a canonical situation, encountered from fundamental biophysics to nanoscale engineering. Using the Lorenz-Mie framework, we optically record the thermally-induced tridimensional trajectories of individual microparticles, within salty aqueous solutions, in the vicinity of a rigid wall, and in the presence of surface charges. We construct the time-dependent position and displacement probability density functions, and study the non-Gaussian character of the latter which is a direct signature of the hindered mobility near the wall. Based on these distributions, we implement a novel, robust and self-calibrated multifitting method, allowing for the thermal-noise-limited inference of diffusion coefficients spatially-resolved at the nanoscale, equilibrium potentials, and forces at the femtoNewton resolution.



rate research

Read More

The interplay between Coulomb friction and random excitations is studied experimentally by means of a rotating probe in contact with a stationary granular gas. The granular material is independently fluidized by a vertical shaker, acting as a heat bath for the Brownian-like motion of the probe. Two ball bearings supporting the probe exert nonlinear Coulomb friction upon it. The experimental velocity distribution of the probe, autocorrelation function, and power spectra are compared with the predictions of a linear Boltzmann equation with friction, which is known to simplify in two opposite limits: at high collision frequency, it is mapped to a Fokker-Planck equation with nonlinear friction, whereas at low collision frequency, it is described by a sequence of independent random kicks followed by friction-induced relaxations. Comparison between theory and experiment in these two limits shows good agreement. Deviations are observed at very small velocities, where the real bearings are not well modeled by Coulomb friction.
The short-time motion of Brownian particles in an incompressible Newtonian fluid under shear, in which the fluid inertia becomes important, was investigated by direct numerical simulation of particulate flows. Three-dimensional simulations were performed, wherein external forces were introduced to approximately form Couette flows throughout the entire system with periodic boundary conditions. In order to examine the validity of the method, the mean square displacement of a single spherical particle in a simple shear flow was calculated, and these results were compared with a hydrodynamic analytical solution that includes the effects of the fluid inertia. Finally, the dynamical behavior of a monodisperse dispersion composed of repulsive spherical particles was examined on short time scales, and the shear-induced diffusion coefficients were measured for several volume fractions up to 0.50.
Observation of the Brownian motion of a small probe interacting with its environment is one of the main strategies to characterize soft matter. Essentially two counteracting forces govern the motion of the Brownian particle. First, the particle is driven by the rapid collisions with the surrounding solvent molecules, referred to as thermal noise. Second, the friction between the particle and the viscous solvent damps its motion. Conventionally, the thermal force is assumed to be random and characterized by a white noise spectrum. Friction is assumed to be given by the Stokes drag, implying that motion is overdamped. However, as the particle receives momentum from the fluctuating fluid molecules, it also displaces the fluid in its immediate vicinity. The entrained fluid acts back on the sphere and gives rise to long-range correlation. This hydrodynamic memory translates to thermal forces, which display a coloured noise spectrum. Even 100 years after Perrins pioneering experiments on Brownian motion, direct experimental observation of this colour has remained elusive. Here, we measure the spectrum of thermal noise by confining the Brownian fluctuations of a microsphere by a strong optical trap. We show that due to hydrodynamic correlations the power spectral density of the spheres positional fluctuations exhibits a resonant peak in strong contrast to overdamped systems. Furthermore, we demonstrate that peak amplification can be achieved through parametric excitation. In analogy to Microcantilever-based sensors our results demonstrate that the particle-fluid-trap system can be considered as a nanomechanical resonator, where the intrinsic hydrodynamic backflow enhances resonance. Therefore, instead of being a disturbance, details in thermal noise can be exploited for the development of new types of sensors and particle-based assays for lab-on-a-chip applications.
We have directly observed short-time stress propagation in viscoelastic fluids using two optically trapped particles and a fast interferometric particle-tracking technique. We have done this both by recording correlations in the thermal motion of the particles and by measuring the response of one particle to the actively oscillated second particle. Both methods detect the vortex-like flow patterns associated with stress propagation in fluids. This inertial vortex flow propagates diffusively for simple liquids, while for viscoelastic solutions the pattern spreads super-diffusively, dependent on the shear modulus of the medium.
Surface interactions provide a class of mechanisms which can be employed for propulsion of micro- and nanometer sized particles. We investigate the related efficiency of externally and self-propelled swimmers. A general scaling relation is derived showing that only swimmers whose size is comparable to, or smaller than, the interaction range can have appreciable efficiency. An upper bound for efficiency at maximum power is 1/2. Numerical calculations for the case of diffusiophoresis are found to be in good agreement with analytical expressions for the efficiency.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا