We have directly observed short-time stress propagation in viscoelastic fluids using two optically trapped particles and a fast interferometric particle-tracking technique. We have done this both by recording correlations in the thermal motion of the particles and by measuring the response of one particle to the actively oscillated second particle. Both methods detect the vortex-like flow patterns associated with stress propagation in fluids. This inertial vortex flow propagates diffusively for simple liquids, while for viscoelastic solutions the pattern spreads super-diffusively, dependent on the shear modulus of the medium.
The short-time motion of Brownian particles in an incompressible Newtonian fluid under shear, in which the fluid inertia becomes important, was investigated by direct numerical simulation of particulate flows. Three-dimensional simulations were performed, wherein external forces were introduced to approximately form Couette flows throughout the entire system with periodic boundary conditions. In order to examine the validity of the method, the mean square displacement of a single spherical particle in a simple shear flow was calculated, and these results were compared with a hydrodynamic analytical solution that includes the effects of the fluid inertia. Finally, the dynamical behavior of a monodisperse dispersion composed of repulsive spherical particles was examined on short time scales, and the shear-induced diffusion coefficients were measured for several volume fractions up to 0.50.
The interplay between Coulomb friction and random excitations is studied experimentally by means of a rotating probe in contact with a stationary granular gas. The granular material is independently fluidized by a vertical shaker, acting as a heat bath for the Brownian-like motion of the probe. Two ball bearings supporting the probe exert nonlinear Coulomb friction upon it. The experimental velocity distribution of the probe, autocorrelation function, and power spectra are compared with the predictions of a linear Boltzmann equation with friction, which is known to simplify in two opposite limits: at high collision frequency, it is mapped to a Fokker-Planck equation with nonlinear friction, whereas at low collision frequency, it is described by a sequence of independent random kicks followed by friction-induced relaxations. Comparison between theory and experiment in these two limits shows good agreement. Deviations are observed at very small velocities, where the real bearings are not well modeled by Coulomb friction.
We experimentally study the dynamics of active particles (APs) in a viscoelastic fluid under various geometrical constraints such as flat walls, spherical obstacles and cylindrical cavities. We observe that the main effect of the confined viscoelastic fluid is to induce an effective repulsion on the APs when moving close to a rigid surface, which depends on the incident angle, the surface curvature and the particle activity. Additionally, the geometrical confinement imposes an asymmetry to their movement, which leads to strong hydrodynamic torques, thus resulting in detention times on the wall surface orders of magnitude shorter than suggested by thermal diffusion. We show that such viscoelasticity-mediated interactions have striking consequences on the behavior of multi-AP systems strongly confined in a circular pore. In particular, these systems exhibit a transition from liquid-like behavior to a highly ordered state upon increasing their activity. A further increase in activity melts the order, thus leading to a re-entrant liquid-like behavior.
We investigate the mean first passage time of an active Brownian particle in one dimension using numerical simulations. The activity in one dimension is modeled as a two state model; the particle moves with a constant propulsion strength but its orientation switches from one state to other as in a random telegraphic process. We study the influence of a finite resetting rate $r$ on the mean first passage time to a fixed target of a single free Active Brownian Particle and map this result using an effective diffusion process. As in the case of a passive Brownian particle, we can find an optimal resetting rate $r^*$ for an active Brownian particle for which the target is found with the minimum average time. In the case of the presence of an external potential, we find good agreement between the theory and numerical simulations using an effective potential approach.
Combining experiments on active colloids, whose propulsion velocity can be controlled via a feedback loop, and theory of active Brownian motion, we explore the dynamics of an overdamped active particle with a motility that depends explicitly on the particle orientation. In this case, the active particle moves faster when oriented along one direction and slower when oriented along another, leading to an anisotropic translational dynamics which is coupled to the particles rotational diffusion. We propose a basic model of active Brownian motion for orientation-dependent motility. Based on this model, we obtain analytic results for the mean trajectories, averaged over the Brownian noise for various initial configurations, and for the mean-square displacements including their anisotropic non-Gaussian behavior. The theoretical results are found to be in good agreement with the experimental data. Our findings establish a methodology to engineer complex anisotropic motilities of active Brownian particles, with potential impact in the study of the swimming behavior of microorganisms subjected to anisotropic driving fields.
M. Atakhorrami
,D. Mizuno
,G.H. Koenderink
.
(2008)
.
"Short-time inertial response of viscoelastic fluids measured with Brownian motion and with active probes"
.
Fred MacKintosh
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا