No Arabic abstract
Exotic quantum vacuum phenomena are predicted in cavity quantum electrodynamics (QED) systems with ultrastrong light-matter interactions. Their ground states are predicted to be vacuum squeezed states with suppressed quantum fluctuations. The source of such phenomena are antiresonant terms in the Hamiltonian, yet antiresonant interactions are typically negligible compared to resonant interactions in light-matter systems. We report an unusual coupled matter-matter system of magnons that can simulate a unique cavity QED Hamiltonian with coupling strengths that are easily tunable into the ultrastrong coupling regime and with dominant antiresonant terms. We found a novel regime where vacuum Bloch-Siegert shifts, the hallmark of antiresonant interactions, greatly exceed analogous frequency shifts from resonant interactions. Further, we theoretically explored the systems ground state and calculated up to 5.9 dB of quantum fluctuation suppression. These observations demonstrate that magnonic systems provide an ideal platform for simulating exotic quantum vacuum phenomena predicted in ultrastrongly coupled light-matter systems.
The ultrastrong coupling of (quasi-)particles has gained considerable attention due to its application potential and richness of the underlying physics. Coupling phenomena arising due to electromagnetic interactions are well explored. In magnetically ordered systems, the quantum-mechanical exchange-interaction should furthermore enable a fundamentally different coupling mechanism. Here, we report the observation of ultrastrong intralayer exchange-enhanced magnon-magnon coupling in a compensated ferrimagnet. We experimentally study the spin dynamics in a gadolinium iron garnet single crystal using broadband ferromagnetic resonance. Close to the ferrimagnetic compensation temperature, we observe ultrastrong coupling of clockwise and anticlockwise magnon modes. The magnon-magnon coupling strength reaches more than 30% of the mode frequency and can be tuned by varying the direction of the external magnetic field. We theoretically explain the observed phenomenon in terms of an exchange-enhanced mode-coupling mediated by a weak cubic anisotropy.
Inelastic neutron scattering was used to systematically investigate the spin-wave excitations (magnons) in ferromagnetic manganese perovskites. In spite of the large differences in the Curie temperatures ($T_C$s) of different manganites, their low-temperature spin waves were found to have very similar dispersions with the zone boundary magnon softening. From the wavevector dependence of the magnon lifetime effects and its correlation with the dispersions of the optical phonon modes, we argue that a strong magneto-elastic coupling is responsible for the observed low temperature anomalous spin dynamical behavior of the manganites.
Rigidity of an ordered phase in condensed matter results in collective excitation modes spatially extending in macroscopic dimensions. Magnon is a quantum of an elementary excitation in the ordered spin system, such as ferromagnet. Being low dissipative, dynamics of magnons in ferromagnetic insulators has been extensively studied and widely applied for decades in the contexts of ferromagnetic resonance, and more recently of Bose-Einstein condensation as well as spintronics. Moreover, towards hybrid systems for quantum memories and transducers, coupling of magnons and microwave photons in a resonator have been investigated. However, quantum-state manipulation at the single-magnon level has remained elusive because of the lack of anharmonic element in the system. Here we demonstrate coherent coupling between a magnon excitation in a millimetre-sized ferromagnetic sphere and a superconducting qubit, where the interaction is mediated by the virtual photon excitation in a microwave cavity. We obtain the coupling strength far exceeding the damping rates, thus bringing the hybrid system into the strong coupling regime. Furthermore, we find a tunable magnon-qubit coupling scheme utilising a parametric drive with a microwave. Our approach provides a versatile tool for quantum control and measurement of the magnon excitations and thus opens a new discipline of quantum magnonics.
The magnon-magnon coupling in synthetic antiferromagnets advances it as hybrid magnonic systems to explore the quantum information technologies. To induce the magnon-magnon coupling, the parity symmetry between two magnetization needs to be broken. Here we experimentally demonstrate a convenient method to break the parity symmetry by the asymmetric thickness of two magnetic layers and thus introduce a magnon-magnon coupling in Ir-based synthetic antiferromagnets CoFeB(10 nm)/Ir(tIr=0.6 nm, 1.2 nm)/CoFeB(13 nm). Remarkably, we find that the weakly uniaxial anisotropy field (~ 20 Oe) makes the magnon-magnon coupling anisotropic. The coupling strength presented by a characteristic anticrossing gap varies in the range between 0.54 GHz and 0.90 GHz for tIr =0.6 nm, and between nearly zero to 1.4 GHz for tIr = 1.2 nm, respectively. Our results demonstrate a feasible way to induce the magnon-magnon coupling by an asymmetric structure and tune the coupling strength by varying the direction of in-plane magnetic field. The magnon-magnon coupling in this highly tunable material system could open exciting perspectives for exploring quantum-mechanical coupling phenomena.
Synthetic antiferromagnet, comprised of two ferromagnetic layers separated by a non-magnetic layer, possesses two uniform precession resonance modes: in-phase acoustic mode and out-of-phase optic mode. In this work, we theoretically and numerically demonstrated the strong coupling between acoustic and optic magnon modes. The strong coupling is attributed to the symmetry breaking of the system, which can be realized by tilting the bias field or constructing an asymmetrical synthetic antiferromagnet. It is found that the coupling strength can be highly adjusted by tuning the tilting angle of bias field, the magnitude of antiferromagnetic interlayer exchange coupling, and the thicknesses of ferromagnetic layers. Furthermore, the coupling between acoustic and optic magnon modes can even reach the ultrastrong coupling regime. Our findings show high promise for investigating quantum phenomenon with a magnonic platform.