Do you want to publish a course? Click here

Exchange-enhanced Ultrastrong Magnon-Magnon Coupling in a Compensated Ferrimagnet

169   0   0.0 ( 0 )
 Added by Lukas Liensberger
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The ultrastrong coupling of (quasi-)particles has gained considerable attention due to its application potential and richness of the underlying physics. Coupling phenomena arising due to electromagnetic interactions are well explored. In magnetically ordered systems, the quantum-mechanical exchange-interaction should furthermore enable a fundamentally different coupling mechanism. Here, we report the observation of ultrastrong intralayer exchange-enhanced magnon-magnon coupling in a compensated ferrimagnet. We experimentally study the spin dynamics in a gadolinium iron garnet single crystal using broadband ferromagnetic resonance. Close to the ferrimagnetic compensation temperature, we observe ultrastrong coupling of clockwise and anticlockwise magnon modes. The magnon-magnon coupling strength reaches more than 30% of the mode frequency and can be tuned by varying the direction of the external magnetic field. We theoretically explain the observed phenomenon in terms of an exchange-enhanced mode-coupling mediated by a weak cubic anisotropy.



rate research

Read More

We demonstrate the magnetically-induced transparency (MIT) effect in Y$_3$Fe$_5$O$_{12}$(YIG)/Permalloy(Py) coupled bilayers. The measurement is achieved via a heterodyne detection of the coupled magnetization dynamics using a single wavelength that probes the magneto-optical Kerr and Faraday effects of Py and YIG, respectively. Clear features of the MIT effect are evident from the deeply modulated ferromagnetic resonance of Py due to the perpendicular-standing-spin-wave of YIG. We develop a phenomenological model that nicely reproduces the experimental results including the induced amplitude and phase evolution caused by the magnon-magnon coupling. Our work offers a new route towards studying phase-resolved spin dynamics and hybrid magnonic systems.
Exotic quantum vacuum phenomena are predicted in cavity quantum electrodynamics (QED) systems with ultrastrong light-matter interactions. Their ground states are predicted to be vacuum squeezed states with suppressed quantum fluctuations. The source of such phenomena are antiresonant terms in the Hamiltonian, yet antiresonant interactions are typically negligible compared to resonant interactions in light-matter systems. We report an unusual coupled matter-matter system of magnons that can simulate a unique cavity QED Hamiltonian with coupling strengths that are easily tunable into the ultrastrong coupling regime and with dominant antiresonant terms. We found a novel regime where vacuum Bloch-Siegert shifts, the hallmark of antiresonant interactions, greatly exceed analogous frequency shifts from resonant interactions. Further, we theoretically explored the systems ground state and calculated up to 5.9 dB of quantum fluctuation suppression. These observations demonstrate that magnonic systems provide an ideal platform for simulating exotic quantum vacuum phenomena predicted in ultrastrongly coupled light-matter systems.
We experimentally study the magnon-photon coupling in a system consitsing of the compensating ferrimagnet gadolinium iron garnet (GdIG) and a three-dimensional microwave cavity. The temperature is varied in order to tune the GdIG magnetization and to observe the transition from the weak coupling regime to the strong coupling regime. By measuring and modelling the complex reflection parameter of the system the effective coupling rate g eff and the magnetization M eff of the sample are extracted. Comparing g eff with the magnon and the cavity decay rate we conclude that the strong coupling regime is easily accessible using GdIG. We show that the effective coupling strength follows the predicted square root dependence on the magnetization.
80 - Di Wang , Xiangyan Bo , Feng Tang 2018
Recently topological aspects of magnon band structure have attracted much interest, and especially, the Dirac magnons in Cu3TeO6 have been observed experimentally. In this work, we calculate the magnetic exchange interactions Js using the first-principles linear-response approach and find that these Js are short-range and negligible for the Cu-Cu atomic pair apart by longer than 7 Angstrom. Moreover there are only 5 sizable magnetic exchange interactions, and according to their signs and strengths, modest magnetic frustration is expected. Based on the obtained magnetic exchange couplings, we successfully reproduce the experimental spin-wave dispersions. The calculated neutron scattering cross section also agrees very well with the experiments. We also calculate Dzyaloshinskii-Moriya interactions (DMIs) and estimate the canting angle (about 1.3{deg}) of the magnetic non-collinearity based on the competition between DMIs and Js, which is consistent with the experiment. The small canting angle agrees with that the current experiments cannot distinguish the DMI induced nodal line from a Dirac point in the spin-wave spectrum. Finally we analytically prove that the sum rule conjectured in [Nat. Phys. 14, 1011 (2018)] holds but only up to the 11th nearest neighbour.
129 - Wei He , Z. K. Xie , Rui Sun 2021
The magnon-magnon coupling in synthetic antiferromagnets advances it as hybrid magnonic systems to explore the quantum information technologies. To induce the magnon-magnon coupling, the parity symmetry between two magnetization needs to be broken. Here we experimentally demonstrate a convenient method to break the parity symmetry by the asymmetric thickness of two magnetic layers and thus introduce a magnon-magnon coupling in Ir-based synthetic antiferromagnets CoFeB(10 nm)/Ir(tIr=0.6 nm, 1.2 nm)/CoFeB(13 nm). Remarkably, we find that the weakly uniaxial anisotropy field (~ 20 Oe) makes the magnon-magnon coupling anisotropic. The coupling strength presented by a characteristic anticrossing gap varies in the range between 0.54 GHz and 0.90 GHz for tIr =0.6 nm, and between nearly zero to 1.4 GHz for tIr = 1.2 nm, respectively. Our results demonstrate a feasible way to induce the magnon-magnon coupling by an asymmetric structure and tune the coupling strength by varying the direction of in-plane magnetic field. The magnon-magnon coupling in this highly tunable material system could open exciting perspectives for exploring quantum-mechanical coupling phenomena.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا