Do you want to publish a course? Click here

Viscosity-Mediated Growth and Coalescence of Surface Nanodroplets

94   0   0.0 ( 0 )
 Added by Jae Bem You Dr.
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Solvent exchange is a simple method to produce surface nanodroplets on a substrate for a wide range of applications by displacing a solution of good solvent, poor solvent and oil (Solution A) by a poor solvent (Solution B). In this work, we show that the growth and coalescence of nanodroplets on a homogeneous surface is mediated by the viscosity of the solvent. We show that at high flow rates of viscous Solution B, the final droplet volume deviates from the scaling law that correlates final droplet volume to the flow rate of non-viscous Solution B, reported in previous work. We attribute this deviation to a two-regime growth in viscous Solution B, where transition from an initial, fast regime to a final slow regime influenced by the flow rate. Moreover, viscous solution B hinders the coalescence of growing droplets, leading to a distinct bimodal distribution of droplet size with stable nanodroplets, in contrast to a continuous size distribution of droplets in non-viscous case. We demonstrate that the group of small droplets produced in high viscosity environment may be applied for enhanced fluorescence detection with higher sensitivity and shorter response time. The finding of this work can potentially be applied for mediating the size distribution of surface nanodroplets on homogeneous surface without templates.



rate research

Read More

Bacterial biofilms, surface-attached communities of cells, are in some respects similar to colloidal solids; both are densely packed with non-zero yield stresses. However, unlike non-living materials, bacteria reproduce and die, breaking mechanical equilibrium and inducing collective dynamic responses. We report experiments and theory investigating the motion of immotile Vibrio cholerae, which can kill each other and reproduce in biofilms. We vary viscosity by using bacterial variants that secrete different amounts of extracellular matrix polymers, but are otherwise identical. Unlike thermally-driven diffusion, in which diffusivity decreases with increased viscosity, we find that cellular motion mediated by death and reproduction is independent of viscosity over timescales relevant to bacterial reproduction. To understand this surprising result, we use two separate modeling approaches. First we perform explicitly mechanical simulations of one-dimensional chains of Voigt-Kelvin elements that can die and reproduce. Next, we perform an independent statistical approach, modeling Brownian motion with the classic Langevin equation under an effective temperature that depends on cellular division rate. The diffusion of cells in both approaches agrees quite well, supporting a kinetic interpretation for the effective temperature used here and developed in previous work. As the viscoelastic behavior of biofilms is believed to play a large role in their anomalous biological properties, such as antibiotic resistance, the independence of cellular diffusive motion --- important for biofilm growth and remodeling --- on viscoelastic properties likely holds ecological, medical, and industrial relevance.
Polymeric nanoparticles (NPs) have a great application potential in science and technology. Their functionality strongly depends on their size. We present a theory for the size of NPs formed by precipitation of polymers into a bad solvent in the presence of a stabilizing surfactant. The analytical theory is based upon diffusion-limited coalescence kinetics of the polymers. Two relevant time scales, a mixing and a coalescence time, are identified and their ratio is shown to determine the final NP diameter. The size is found to scale in a universal manner and is predominantly sensitive to the mixing time and the polymer concentration if the surfactant concentration is sufficiently high. The model predictions are in good agreement with experimental data. Hence the theory provides a solid framework for tailoring nanoparticles with a priori determined size.
Reliably distinguishing between cells based on minute differences in receptor density is crucial for cell-cell or virus-cell recognition, the initiation of signal transduction and selective targeting in directed drug delivery. Such sharp differentiation between different surfaces based on their receptor density can only be achieved by multivalent interactions. Several theoretical and experimental works have contributed to our understanding of this superselectivity, however a versatile, controlled experimental model system that allows quantitative measurements on the ligand-receptor level is still missing. Here, we present a multivalent model system based on colloidal particles equipped with surface-mobile DNA linkers that can superselectively target a surface functionalized with the complementary mobile DNA-linkers. Using a combined approach of light microscopy and Foerster Resonance Energy Transfer (FRET), we can directly observe the binding and recruitment of the ligand-receptor pairs in the contact area. We find a non-linear transition in colloid-surface binding probability with increasing ligand or receptor concentration. In addition, we observe an increased sensitivity with weaker ligand-receptor interactions and we confirm that the time-scale of binding reversibility of individual linkers has a strong influence on superselectivity. These unprecedented insights on the ligand-receptor level provide new, dynamic information into the multivalent interaction between two fluidic membranes mediated by both mobile receptors and ligands and will enable future work on the role of spatial-temporal ligand-receptor dynamics on colloid-surface binding.
Fouling is a major obstacle and challenge in membrane-based separation processes. Caused by the sophisticated interactions between foulant and membrane surface, fouling strongly depends on membrane surface chemistry and morphology. Current studies in the field have been largely focused on polymer membranes. Herein, we report a molecular simulation study for fouling on alumina and graphene membrane surfaces during water treatment. For two foulants (sucralose and bisphenol A), the fouling on alumina surfaces is reduced with increasing surface roughness; however, the fouling on graphene surfaces is enhanced by roughness. It is unravelled that the foulant-surface interaction becomes weaker in the ridge region of a rough alumina surface, thus allowing foulant to leave the surface and reducing fouling. Such behavior is not observed on a rough graphene surface because of the strong foulant-graphene interaction. Moreover, with increasing roughness, the hydrogen bonds formed between water and alumina surfaces are found to increase in number as well as stability. By scaling the atomic charges of alumina, fouling behavior on alumina surfaces is shifted to the one on graphene surfaces. This simulation study reveals that surface chemistry and roughness play a crucial role in membrane fouling, and the microscopic insights are useful for the design of new membranes towards high-performance water treatment.
Recently, in an ensemble of small spheres, we proposed a method that converts the force between two large spheres into the pressure on the large spheres surface element. Using it, the density distribution of the small spheres around the large sphere can be obtained experimentally. In a similar manner, in this letter, we propose a transform theory for surface force apparatus, which transforms the force acting on the cylinder into the density distribution of the small spheres on the cylindrical surface. The transform theory we derived is briefly explained in this letter.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا