No Arabic abstract
Growth of two-dimensional metals has eluded materials scientists since the discovery of the atomically thin graphene and other covalently bound 2D materials. Here, we report a two-atom-thick hexagonal copper-gold alloy, grown through thermal evaporation on freestanding graphene and hexagonal boron nitride. The structures are imaged at atomic resolution with scanning transmission electron microscopy and further characterized with spectroscopic techniques. Electron irradiation in the microscope provides sufficient energy for a phase transformation of the 2D structure--atoms are released from their lattice sites with the gold atoms eventually forming face-centered cubic nanoclusters on top of 2D regions during observation. The presence of copper in the alloy enhances sticking of gold to the substrate, which has clear implications for creating atomically thin electrodes for applications utilizing 2D materials. Its practically infinite surface-to-bulk ratio also makes the 2D CuAu particularly interesting for catalysis applications.
We report on the ab initio discovery of a novel putative ground state for quasi two-dimensional TiO$_2$ through a structural search using the minima hopping method with an artificial neural network potential. The structure is based on a honeycomb lattice and is energetically lower than the experimentally reported lepidocrocite sheet by 7~meV/atom, and merely 13~meV/atom higher in energy than the ground state rutile bulk structure. According to our calculations, the hexagonal sheet is stable against mechanical stress, it is chemically inert and can be deposited on various substrates without disrupting the structure. Its properties differ significantly from all known TiO$_2$ bulk phases with a large gap of 5.05~eV that can be tuned through strain engineering.
High-level first-principles computations predict blue phosphorene bilayer to be a two-dimensional metal. This structure has not been considered before and was identified by employing a block-diagram scheme that yields the complete set of five high-symmetry stacking configurations of buckled honeycomb layers, and allows their unambiguous classification. We show that all of these stacking configurations are stable or at least metastable configurations both for blue phosphorene and gray arsenene bilayers. For blue phosphorene, the most stable stacking configuration has not yet been reported, and surprisingly it is metallic, while all other arrangements are indirect band gap semiconductors. As it is impossible to interchange the stacking configurations by translations, all of them should be experimentally accessible via the transfer of monolayers. The metallic character of blue phosphorene bilayer is caused by its short interlayer distance of 3.01 {AA} and offers the exceptional possibility to design single elemental all-phosphorus transistors.
Materials with reduced dimensions have been shown to host a wide variety of exotic properties and novel quantum states that often defy textbook wisdom1-5. Ferroelectric polarization and metallicity are well-known examples of mutually exclusive properties that cannot coexist in bulk solids because the net electric field in a metal can be fully screened by free electrons6. An atomically thin metallic layer capped by insulating layers has shown decent conductivity at room temperature7. Moreover, a penetrating polarization field can be employed to induce an ion displacement and create an intrinsic polarization in the metallic layer. Here we demonstrate that a ferroelectric metal can be artificially synthesized through imposing a strong polarization field in the form of ferroelectric/unit-cell-thin metal superlattices. In this way the symmetry of an atomically thin conductive layer can be broken and manipulated by a neighboring polar field, thereby forming a two-dimensional (2D) ferroelectric metal. The fabricated of (SrRuO3)1/(BaTiO3)10 superlattices exhibit ferroelectric polarization in an atomically thin layer with metallic conductivity at room temperature. A multipronged investigation combining structural analyses, electrical measurements, and first-principles electronic structure calculations unravels the coexistence of 2D electrical conductivity in the SrRuO3 monolayer accompanied by the electric polarization. Such 2D ferroelectric metal paves a novel way to engineer a quantum multi-state with unusual coexisting properties, such as ferroelectrics, ferromagnetics and metals, manipulated by external fields8,9.
Chemically stable quantum-confined 2D metals are of interest in next-generation nanoscale quantum devices. Bottom-up design and synthesis of such metals could enable the creation of materials with tailored, on-demand, electronic and optical properties for applications that utilize tunable plasmonic coupling, optical non-linearity, epsilon-near-zero behavior, or wavelength-specific light trapping. In this work, we demonstrate that the electronic, superconducting and optical properties of air-stable two-dimensional metals can be controllably tuned by the formation of alloys. Environmentally robust large-area two-dimensional InxGa1-x alloys are synthesized by Confinement Heteroepitaxy (CHet). Near-complete solid solubility is achieved with no evidence of phase segregation, and the composition is tunable over the full range of x by changing the relative elemental composition of the precursor. The optical and electronic properties directly correlate with alloy composition, wherein the dielectric function, band structure, superconductivity, and charge transfer from the metal to graphene are all controlled by the indium/gallium ratio in the 2D metal layer.
The metal diborides are a class of ceramic materials with crystal structures consisting of hexagonal sheets of boron atoms alternating with planes of metal atoms held together with mixed character ionic/covalent bonds. Many of the metal diborides are ultrahigh temperature ceramics like HfB$_2$, TaB$_2$, and ZrB$_2$, which have melting points above 3000$^circ$C, high mechanical hardness and strength at high temperatures, and high chemical resistance, while MgB$_2$ is a superconductor with a transition temperature of 39 K. Here we demonstrate that this diverse family of non-van der Waals materials can be processed into stable dispersions of two-dimensional (2D) nanosheets using ultrasonication-assisted exfoliation. We generate 2D nanosheets of the metal diborides AlB$_2$, CrB$_2$, HfB$_2$, MgB$_2$, NbB$_2$, TaB$_2$, TiB$_2$, and ZrB$_2$, and use electron and scanning probe microscopies to characterize their structures, morphologies, and compositions. The exfoliated layers span up to micrometers in lateral dimension and reach thicknesses down to 2-3 nm, while retaining their hexagonal atomic structure and chemical composition. We exploit the convenient solution-phase dispersions of exfoliated CrB$_2$ nanosheets to incorporate them directly into polymer composites. In contrast to the hard and brittle bulk CrB$_2$, we find that CrB$_2$ nanocomposites remain very flexible and simultaneously provide increases in the elastic modulus and the ultimate tensile strength of the polymer. The successful liquid-phase production of 2D metal diborides enables their processing using scalable low-temperature solution-phase methods, extending their use to previously unexplored applications, and reveals a new family of non-van der Waals materials that can be efficiently exfoliated into 2D forms.