Do you want to publish a course? Click here

A two-dimensional hexagonal sheet of TiO$_2$

103   0   0.0 ( 0 )
 Added by Maximilian Amsler
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on the ab initio discovery of a novel putative ground state for quasi two-dimensional TiO$_2$ through a structural search using the minima hopping method with an artificial neural network potential. The structure is based on a honeycomb lattice and is energetically lower than the experimentally reported lepidocrocite sheet by 7~meV/atom, and merely 13~meV/atom higher in energy than the ground state rutile bulk structure. According to our calculations, the hexagonal sheet is stable against mechanical stress, it is chemically inert and can be deposited on various substrates without disrupting the structure. Its properties differ significantly from all known TiO$_2$ bulk phases with a large gap of 5.05~eV that can be tuned through strain engineering.



rate research

Read More

Growth of two-dimensional metals has eluded materials scientists since the discovery of the atomically thin graphene and other covalently bound 2D materials. Here, we report a two-atom-thick hexagonal copper-gold alloy, grown through thermal evaporation on freestanding graphene and hexagonal boron nitride. The structures are imaged at atomic resolution with scanning transmission electron microscopy and further characterized with spectroscopic techniques. Electron irradiation in the microscope provides sufficient energy for a phase transformation of the 2D structure--atoms are released from their lattice sites with the gold atoms eventually forming face-centered cubic nanoclusters on top of 2D regions during observation. The presence of copper in the alloy enhances sticking of gold to the substrate, which has clear implications for creating atomically thin electrodes for applications utilizing 2D materials. Its practically infinite surface-to-bulk ratio also makes the 2D CuAu particularly interesting for catalysis applications.
We report on the discovery of a 2-dimensional copper-bismuth nano sheet from textit{ab initio} calculations, which we call cubine. According to our predictions, single layers of cubine can be isolated from the recently reported high-pressure CuBi bulk material (metastable at ambient conditions) at an energetic cost of merely $approx 20$~meV/AA$^2$, comparable to separating single layers of graphene from graphite. Our calculations suggest that cubine has remarkable electronic and electrochemical properties: It is a superconductor with a moderate electron-phonon coupling $lambda=0.5$, leading to a $T_c$ of $approx1$~K, and can be readily intercalated with lithium with a high diffusibility, rendering it a promising candidate material as an anode in lithium-ion batteries.
Knowledge of the molecular frontier levels alignment in the ground state can be used to predict the photocatalytic activity of an interface. The position of the adsorbates highest occupied molecular orbital (HOMO) levels relative to the substrates valence band maximum (VBM) in the interface describes the favorability of photogenerated hole transfer from the VBM to the adsorbed molecule. This is a key quantity for assessing and comparing H$_2$O photooxidation activities on two prototypical photocatalytic TiO$_2$ surfaces: anatase (A)-TiO$_2$(101) and rutile (R)-TiO$_2$(110). Using the projected density of states (DOS) from state-of-the-art quasiparticle (QP) $G_0W_0$ calculations, we assess the relative photocatalytic activity of intact and dissociated H$_2$O on coordinately unsaturated (Ti$_{textit{cus}}$) sites of idealized stoichiometric A-TiO$_2$(101)/R-TiO$_2$(110) and bridging O vacancies (O$_{textit{br}}^{textit{vac}}$) of defective A-TiO$_{2-x}$(101)/R-TiO$_{2-x}$(110) surfaces ($x=frac{1}{4},frac{1}{8}$) for various coverages. Such a many-body treatment is necessary to correctly describe the anisotropic screening of electron-electron interactions at a photocatalytic interface, and hence obtain accurate interfacial level alignments. The more favorable ground state HOMO level alignment for A-TiO$_2$(101) may explain why the anatase polymorph shows higher photocatalytic activities than the rutile polymorph. Our results indicate that (1) hole trapping is more favored on A-TiO$_2$(101) than R-TiO$_2$(110) and (2) HO@Ti$_{textit{cus}}$ is more photocatalytically active than intact H$_2$O@Ti$_{textit{cus}}$.
The discovery of graphene makes it highly desirable to seek new two-dimensional materials. Through first-principles investigation, we predict two-dimensional materials of ReN$_{2}$: honeycomb and tetragonal structures. The phonon spectra establish the dynamical stability for both of the two structures, and the calculated in-plane stiffness constants proves their mechanical stability. The energy bands near the Fermi level consist of N-p and Re-d orbitals for the honeycomb structure, and are mainly from Re d orbitals for the tetragonal structure. While the tetragonal structure is non-magnetic, the honeycomb structure has N-based ferromagnetism, which will transit to anti-ferromagnetism under 14$%$ biaxial strain. The calculated electron localization function and spin density indicate that direct N-N bond can occur only in the honeycomb structure. The ferromagnetism allows us to distinguish the two 2D phases easily. The tetragonal phase has lower energy than the honeycomb one, which means that the tetragonal phase is more stable, but the hexagonal phase has much larger bulk, shear, and Youngs muduli than the tetragonal phase. The tetragonal phase is a three-bands metal, and the hexagonal phase is a ferromagnetic semi-metal. The special structural, electronic, magnetic, and optical properties in the honeycomb and tetragonal structures make them promising for novel applications.
The hyperfine structure of the interstitial muonium (Mu) in rutile (TiO$_2$, weakly $n$-type) has been identified by means of a muon spin rotation technique. The angle-resolved hyperfine parameters exhibit a tetragonal anisotropy within the $ab$ plane and axial anisotropy with respect to the $langle 001rangle$ ($hat{c}$) axis. This strongly suggests that the Mu is bound to O (forming an OH bond) at an off-center site within a channel along the $hat{c}$ axis, while the unpaired Mu electron is localized around the neighboring Ti site. The hyperfine parameters are quantitatively explained by a model that considers spin polarization of the unpaired electron at both the Ti and O sites, providing evidence for the formation of Mu as a Ti-O-Mu complex paramagnetic state. The disappearance of the Mu signal above $sim$10 K suggests that the energy necessary for the promotion of the unpaired electron to the conduction band by thermal activation is of the order of $10^1$ meV. These observations suggest that, while the electronic structure of Mu (and hence H) differs considerably from that of the conventional shallow level donor described by the effective mass model, Mu supplies a loosely bound electron, and thus, serves as a donor in rutile.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا