No Arabic abstract
We present the first catalogue of eclipsing binaries in two MOA fields towards the Galactic bulge, in which over 8,000 candidates, mostly contact and semi-detached binaries of periods < 1 d, were identified. In this paper, the light curves of a small number of interesting candidates including eccentric binaries, binaries with noteworthy phase modulations and eclipsing RS CVn type stars are shown as examples. In addition, we identified three triple object candidates by detecting the light-travel-time effect in their eclipse time variation curves.
We present the first Doppler images of the active eclipsing binary system SZ Psc, based on the high-resolution spectral data sets obtained in 2004 November and 2006 September--December. The least-squares deconvolution technique was applied to derive high signal-to-noise profiles from the observed spectra of SZ Psc. Absorption features contributed by a third component of the system were detected in the LSD profiles at all observed phases. We estimated the mass and period of the third component to be about $0.9 M_{odot}$ and $1283 pm 10$ d, respectively. After removing the contribution of the third body from the LSD profiles, we derived the surface maps of SZ Psc. The resulting Doppler images indicate significant starspot activities on the surface of the K subgiant component. The distributions of starspots are more complex than that revealed by previous photometric studies. The cooler K component exhibited pronounced high-latitude spots as well as numerous low- and intermediate-latitude spot groups during the entire observing seasons, but did not show any large, stable polar cap, different from many other active RS CVn-type binaries.
The paper presents a sample of newly detected eclipsing binaries from the public Kepler data. Orbits and fundamental parameters of 20 unknown eclipsing binaries were determined by modeling of their photometric data. Most of them are well-detached, high-eccentric binaries. We established that the target KID8552719 satisfied all widespread criteria for a planetary candidate. Fitting its light curve we obtained radius R_p=0.9 R_Nept, distance to the host star a = 42.58 Rsun = 0.198 AU and equilibrium temperatute T_p= 489 K. These values imply a Neptune-size object out of the habitable zone of the host star.
The first photometric analysis of V811 Cep was carried out. The first complete light curves of V, R and I bands are given. The analysis was carried out by Wilson-Devinney (W-D) program, and the results show that V811 Cep is a median-contact binary ($f=33.9(pm4.9)%$) with a mass ratio of 0.285. It is a W-subtype contact binary, that is, the component with less mass is hotter than the component with more mass, and the light curves are asymmetric (OConnell effect), which can be explained by the existence of a hot spot on the component with less mass. The orbital inclination is $i=88.3^{circ}$, indicating that it is a totally eclipsing binary, so the parameters obtained are reliable. Through the O-C analyzing, it is found that the orbital period decreases at the rate of $dot{P}=-3.90(pm0.06)times 10^{-7}d cdot yr^{-1}$, which indicates that the mass transfer occurs from the more massive component to the less massive one.
Early-type magnetic stars are rarely found in close binary systems. No such objects were known in eclipsing binaries prior to this study. Here we investigated the eclipsing, spectroscopic double-lined binary HD66051, which exhibits out-of-eclipse photometric variations suggestive of surface brightness inhomogeneities typical of early-type magnetic stars. Using a new set of high-resolution spectropolarimetric observations, we discovered a weak magnetic field on the primary and found intrinsic, element-dependent variability in its spectral lines. The magnetic field structure of the primary is dominated by a nearly axisymmetric dipolar component with a polar field strength $B_{rm d}approx600$ G and an inclination with respect to the rotation axis of $beta_{rm d}=13^{rm o}$. A weaker quadrupolar component is also likely to be present. We combined the radial velocity measurements derived from our spectra with archival optical photometry to determine fundamental masses (3.16 and 1.75 $M_odot$) and radii (2.78 and 1.39 $R_odot$) with a 1-3% precision. We also obtained a refined estimate of the effective temperatures (13000 and 9000 K) and studied chemical abundances for both components with the help of disentangled spectra. We demonstrate that the primary component of HD66051 is a typical late-B magnetic chemically peculiar star with a non-uniform surface chemical abundance distribution. It is not an HgMn-type star as suggested by recent studies. The secondary is a metallic-line star showing neither a strong, global magnetic field nor intrinsic spectral variability. Fundamental parameters provided by our work for this interesting system open unique possibilities for probing interior structure, studying atomic diffusion, and constraining binary star evolution.
We report on the X-ray observations of the eclipsing polar HY Eri (RX J0501-0359), along with its photometric, spectrophotometric, and spectropolarimetric optical variations, collected over 30 years. With an orbital period of 2.855 h, HY Eri falls near the upper edge of the 2-3 h period gap. After 2011, the system went into a prolonged low state, continuing to accrete at a low level. We present an accurate alias-free long-term orbital ephemeris and report a highly significant period change by 10 ms that took place over the time interval from 2011 to 2018. We acquired a high-quality eclipse spectrum that shows the secondary star as a dM5-6 dwarf at a distance $d = 1050 pm 110$ pc. Based on phase-resolved cyclotron and Zeeman spectroscopy, we identify the white dwarf (WD) in HY Eri as a two-pole accretor with nearly opposite accretion spots of 28 and 30 MG. The Zeeman analysis of the low state spectrum reveals a complex magnetic field structure, which we fit by a multipole model. We detected narrow emission lines from the irradiated face of the secondary star, of which Mg I $lambda 5170$ with a radial velocity amplitude of $K_2 = 139 pm 10$ km/s (90% confidence) tracks the secondary more reliably than the narrow H$alpha$ line. Based on the combined dynamical analysis and spectroscopic measurement of the angular radius of the WD, we obtain a primary mass of $M_1 = 0.42 pm 0.05$ $M_odot$ (90% confidence errors), identifying it as a probable He WD or hybrid HeCO WD. The secondary is a main sequence star of $M_2 = 0.24 pm 0.04$ $M_odot$ that seems to be slightly inflated. The large distance of HY Eri and the lack of similar systems suggest a very low space density of polars with low-mass primary. According to current theory, these systems are destroyed by induced runaway mass transfer, suggesting that HY Eri may be doomed to destruction.