Do you want to publish a course? Click here

Unfolded Seiberg-Witten Floer spectra, I: Definition and invariance

175   0   0.0 ( 0 )
 Added by Tirasan Khandhawit
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

Let $Y$ be a closed and oriented $3$-manifold. We define differe



rate research

Read More

We use the construction of unfolded Seiberg-Witten Floer spectra of general 3-manifolds defined in our previous paper to extend the notion of relative Bauer-Furuta invariants to general 4-manifolds with boundary. One of the main purposes of this paper is to give a detailed proof of the gluing theorem for the relative invariants.
We construct a generalization of the Seiberg-Witten Floer spectrum for suitable three-manifolds $Y$ with $b_1(Y)>0$. For a cobordism between three-manifolds we define Bauer-Furuta maps on these new spectra, and additionally compute some examples.
60 - Bai-Ling Wang 1996
We give the definition of the Seiberg-Witten-Floer homology group for a homology 3-sphere. Its Euler characteristic number is a Casson-type invariant. For a four-manifold with boundary a homology sphere, a relative Seiberg-Witten invariant is defined taking values in the Seiberg-Witten-Floer homology group, these relative Seiberg-Witten invariants are applied to certain homology spheres bounding Stein surfaces.
We construct Heegaard Floer theory for 3-manifolds with connected boundary. The theory associates to an oriented, parametrized two-manifold a differential graded algebra. For a three-manifold with parametrized boundary, the invariant comes in two differe
75 - Weifeng Sun 2018
Previously, Cristofaro-Gardiner, Hutchings and Ramos have proved that embedded contact homology (ECH) capacities can recover the volume of a contact 3-manifod in their paper the asymptotics of ECH capacities . There were two main steps to proving this theorem: The first step used an estimate for the energy of min-max Seiberg-Witten Floer generators. The second step used embedded balls in a certain symplectic four manifold. In this paper, stronger estimates on the energy of min-max Seiberg-Witten Floer generators are derived. This stronger estimate implies directly the ECH capacities recover volume theorem (without the help of embedded balls in a certain symplectic four manifold), and moreover, gives an estimate on its speed.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا