Do you want to publish a course? Click here

PINGU and the neutrino mass hierarchy: Statistical and systematic aspects

303   0   0.0 ( 0 )
 Added by Eligio Lisi
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

The proposed PINGU project (Precision IceCube Next Generation Upgrade) is expected to collect O(10^5) atmospheric muon and electron neutrino in a few years of exposure, and to probe the neutrino mass hierarchy through its imprint on the event spectra in energy and direction. In the presence of nonnegligible and partly unknown shape systematics, the analysis of high-statistics spectral variations will face subtle challenges that are largely unprecedented in neutrino physics. We discuss these issues both on general grounds and in the currently envisaged PINGU configuration, where we find that possible shape uncertainties at the (few) percent level can noticeably affect the sensitivity to the hierarchy. We also discuss the interplay between the mixing angle theta_23 and the PINGU sensitivity to the hierarchy. Our results suggest that more refined estimates of spectral uncertainties are needed in next-generation, large-volume atmospheric neutrino experiments.



rate research

Read More

The relatively large measured value of $theta_{13}$ has opened up the possibility of determining the neutrino mass hierarchy through earth matter effects. Amongst the current accelerator-based experiments only NOvA has a long enough baseline to observe earth matter effects. However, NOvA is plagued with uncertainty on the knowledge of the true value of $delta_{CP}$, and this could drastically reduce its sensitivity to the neutrino mass hierarchy. The earth matter effect on atmospheric neutrinos on the other hand is almost independent of $delta_{CP}$. The 50 kton magnetized Iron CALorimeter at the India-based Neutrino Observatory (ICAL@INO) will be observing atmospheric neutrinos. The charge identification capability of this detector gives it an edge over others for mass hierarchy determination through observation of earth matter effects. We study in detail the neutrino mass hierarchy sensitivity of the data from this experiment simulated using the Nuance based generator developed for ICAL@INO and folded with the detector resolutions and efficiencies obtained by the INO collaboration from a full Geant4-based detector simulation. The data from ICAL@INO is then combined with simulated data from T2K, NOvA, Double Chooz, RENO and Daya Bay experiments and a combined sensitivity study to the mass hierarchy is performed. With 10 years of ICAL@INO data combined with T2K, NOvA and reactor data, one could get about $2.3sigma-5.7sigma$ discovery of the neutrino mass hierarchy, depending on the true value of $sin^2theta_{23}$ [0.4 -- 0.6], $sin^22theta_{13}$ [0.08 -- 0.12] and $delta_{CP}$ [0 -- 2$pi$].
Proposed medium-baseline reactor neutrino experiments offer unprecedented opportunities to probe, at the same time, the mass-mixing parameters which govern $ u_e$ oscillations both at short wavelength (delta m^2 and theta_{12}) and at long wavelength (Delta m^2 and theta_{13}), as well as their tiny interference effects related to the mass hierarchy (i.e., the relative sign of Delta m^2 and delta m^2). In order to take full advantage of these opportunities, precision calculations and refined statistical analyses of event spectra are required. In such a context, we revisit several input ingredients, including: nucleon recoil in inverse beta decay and its impact on energy reconstruction and resolution, hierarchy and matter effects in the oscillation probability, spread of reactor distances, irreducible backgrounds from geoneutrinos and from far reactors, and degeneracies between energy scale and spectrum shape uncertainties. We also introduce a continuous parameter alpha, which interpolates smoothly between normal hierarchy (alpha=+1) and inverted hierarchy (alpha=-1). The determination of the hierarchy is then transformed from a test of hypothesis to a parameter estimation, with a sensitivity given by the distance of the true case (either alpha=+1 or alpha=-1) from the undecidable case (alpha=0). Numerical experiments are performed for the specific set up envisaged for the JUNO project, assuming a realistic sample of O(10^5) reactor events. We find a typical sensitivity of ~2 sigma to the hierarchy in JUNO, which, however, can be challenged by energy scale and spectrum shape systematics, whose possible conspiracy effects are investigated. The prospective accuracy reachable for the other mass-mixing parameters is also discussed.
Latest measurements have revealed that the deviation from a maximal solar mixing angle is approximately the Cabibbo angle, i.e. QLC relation. We argue that it is not plausible that this deviation from maximality, be it a coincidence or not, comes from the charged lepton mixing. Consequently we have calculated the required corrections to the exactly bimaximal neutrino mass matrix ansatz necessary to account for the solar mass difference and the solar mixing angle. We point out that the relative size of these two corrections depends strongly on the hierarchy case under consideration. We find that the inverted hierarchy case with opposite CP parities, which is known to guarantee the RGE stability of the solar mixing angle, offers the most plausible scenario for a high energy origin of a QLC-corrected bimaximal neutrino mass matrix. This possibility may allow us to explain the QLC relation in connection with the origin of the charged fermion mass matrices.
48 - L. Stanco , S. Dusini , M. Tenti 2016
Nowadays neutrino physics is undergoing a change of perspective: the discovery period is almost over and the phase of precise measurements is starting. Despite the limited statistics collected for some variables, the three--flavour oscillation neutrino framework is strengthening well. In this framework a new method has been developed to determine the neutrino mass ordering, one of the still unknown and most relevant parameters. The method is applied to the 2015 results of the NOvA experiment for $ u_mu rightarrow u_e$ appearance, including its systematic errors. A substantial gain in significance is obtained compared to the traditional $Deltachi^2$ approach. Perspectives are provided for future results obtainable by NOvA with larger exposures. Assuming the number of the 2015 $ u_e$ observed events scales with the exposure, an increase in only a factor three would exclude the inverted hierarchy at more than 95% C.L. over the full range of the CP violating phase. The preliminary 2016 NOvA measurement on umunue appearance has also been analyzed.
73 - D. L. Danielson 2018
The Coulomb enhancement of low energy electrons in nuclear beta decay generates sharp cutoffs in the accompanying antineutrino spectrum at the beta decay endpoint energies. It has been conjectured that these features will interfere with measuring the effect of a neutrino mass hierarchy on an oscillated nuclear reactor antineutrino spectrum. These sawtooth-like features will appear in detailed reactor antineutrino spectra, with characteristic energy scales similar to the oscillation period critical to neutrino mass hierarchy determination near a 53 km baseline. However, these sawtooth-like distortions are found to contribute at a magnitude of only a few percent relative to the mass hierarchy-dependent oscillation pattern in Fourier space. In the Fourier cosine and sine transforms, the features that encode a neutrino mass hierarchy dominate by over sixteen (thirty-three) times in prominence to the maximal contribution of the sawtooth-like distortions from the detailed energy spectrum, given $3.2%/sqrt{E_mathrm{vis.}/mathrm{MeV}}$ (perfect) detector energy resolution. The effect of these distortions is shown to be negligible even when the uncertainties in the reactor spectrum, oscillation parameters, and counting statistics are considered. This result is shown to hold even when the opposite hierarchy oscillation patterns are nearly degenerate in energy space, if energy response nonlinearities are controlled to below 0.5%. Therefore with accurate knowledge of detector energy response, the sawtooth-like features in reactor antineutrino spectra will not significantly impede neutrino mass hierarchy measurements using reactor antineutrinos.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا