Do you want to publish a course? Click here

14Be(p,n)14B reaction at 69 MeV in inverse kinematics

305   0   0.0 ( 0 )
 Added by Yoshiteru Satou
 Publication date 2011
  fields
and research's language is English




Ask ChatGPT about the research

A Gamow-Teller (GT) transition from the drip-line nucleus 14Be to 14B was studied via the (p,n) reaction in inverse kinematics using a secondary 14Be beam at 69 MeV/nucleon. The invariant mass method is employed to reconstruct the energy spectrum. A peak is observed at an excitation energy of 1.27(2) MeV in 14B, together with bumps at 2.08 and 4.06(5) MeV. The observed forward peaking of the state at 1.27 MeV and a good description for the differential cross section, obtained with a DWBA calculation provide support for the 1+ assignment to this state. By extrapolating the cross section to zero momentum transfer the GT-transition strength is deduced. The value is found to compare well with that reported in a beta-delayed neutron emission study.

rate research

Read More

Transfer reactions have provided exciting opportunities to study the structure of exotic nuclei and are often used to inform studies relating to nucleosynthesis and applications. In order to benefit from these reactions and their application to rare ion beams (RIBs) it is necessary to develop the tools and techniques to perform and analyze the data from reactions performed in inverse kinematics, that is with targets of light nuclei and heavier beams. We are continuing to expand the transfer reaction toolbox in preparation for the next generation of facilities, such as the Facility for Rare Ion Beams (FRIB), which is scheduled for completion in 2022. An important step in this process is to perform the (d,n) reaction in inverse kinematics, with analyses that include Q-value spectra and differential cross sections. In this way, proton-transfer reactions can be placed on the same level as the more commonly used neutron-transfer reactions, such as (d,p), (9Be,8Be), and (13C,12C). Here we present an overview of the techniques used in (d,p) and (d,n), and some recent data from (d,n) reactions in inverse kinematics using stable beams of 12C and 16O.
The $^{14}textrm{N(p,}gammatextrm{)}^{15}textrm{O}$ reaction is the slowest reaction of the carbon-nitrogen cycle of hydrogen burning and thus determines its rate. The precise knowledge of its rate is required to correctly model hydrogen burning in asymptotic giant branch stars. In addition, it is a necessary ingredient for a possible solution of the solar abundance problem by using the solar $^{13}$N and $^{15}$O neutrino fluxes as probes of the carbon and nitrogen abundances in the solar core. After the downward revision of its cross section due to a much lower contribution by one particular transition, capture to the ground state in $^{15}$O, the evaluated total uncertainty is still 8%, in part due to an unsatisfactory knowledge of the excitation function over a wide energy range. The present work reports precise S-factor data at twelve energies between 0.357-1.292~MeV for the strongest transition, capture to the 6.79~MeV excited state in $^{15}$O, and at ten energies between 0.479-1.202~MeV for the second strongest transition, capture to the ground state in $^{15}$O. An R-matrix fit is performed to estimate the impact of the new data on astrophysical energies. The recently suggested slight enhancement of the 6.79~MeV transition at low energy could not be confirmed. The present extrapolated zero-energy S-factors are $S_{6.79}(0)$~=~1.24$pm$0.11~keV~barn and $S_{rm GS}(0)$~=~0.19$pm$0.05~keV~barn.
In this Letter we report on the first inverse kinematics measurement of key resonances in the ${}^{22}text{Ne}(p,gamma)^{23}text{Na}$ reaction which forms part of the NeNa cycle, and is relevant for ${}^{23}$Na synthesis in asymptotic giant branch (AGB) stars. An anti-correlation in O and Na abundances is seen across all well-studied globular clusters (GC), however, reaction-rate uncertainties limit the precision as to which stellar evolution models can reproduce the observed isotopic abundance patterns. Given the importance of GC observations in testing stellar evolution models and their dependence on NeNa reaction rates, it is critical that the nuclear physics uncertainties on the origin of ${}^{23}$Na be addressed. We present results of direct strengths measurements of four key resonances in ${}^{22}text{Ne}(p,gamma)^{23}text{Na}$ at E$_{{text c.m.}}$ = 149 keV, 181 keV, 248 keV and 458 keV. The strength of the important E$_{{text c.m.}}$ = 458 keV reference resonance has been determined independently of other resonance strengths for the first time with an associated strength of $omegagamma$ = 0.439(22) eV and with higher precision than previously reported. Our result deviates from the two most recently published results obtained from normal kinematics measurements performed by the LENA and LUNA collaborations but is in agreement with earlier measurements. The impact of our rate on the Na-pocket formation in AGB stars and its relation to the O-Na anti-correlation was assessed via network calculations. Further, the effect on isotopic abundances in CO and ONe novae ejecta with respect to pre-solar grains was investigated.
A study of the reaction pi+ + d --> p + p has been performed in the energy range of 18 - 44 MeV. Total cross sections and differential cross sections at six angles have been measured at 15 energies with an energy increment of 1 - 2 MeV. This is the most systematic data set in this energy range. No structure in the energy dependence of the cross section has been observed within the accuracy of this experiment.
Proton-proton and proton-eta invariant mass distributions and the total cross section for the pp to pp eta reaction have been determined near the threshold at an excess energy of Q=10 MeV. The experiment has been conducted using the COSY-11 detector setup and the cooler synchrotron COSY. The determined invariant mass spectra reveal significant enhancements in the region of low proton-proton relative momenta, similarly as observed previously at higher excess energies of Q=15.5 MeV and Q= 40MeV.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا