Do you want to publish a course? Click here

Development of the (d,n) proton-transfer reaction in inverse kinematics for structure studies

163   0   0.0 ( 0 )
 Added by Kate Jones
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

Transfer reactions have provided exciting opportunities to study the structure of exotic nuclei and are often used to inform studies relating to nucleosynthesis and applications. In order to benefit from these reactions and their application to rare ion beams (RIBs) it is necessary to develop the tools and techniques to perform and analyze the data from reactions performed in inverse kinematics, that is with targets of light nuclei and heavier beams. We are continuing to expand the transfer reaction toolbox in preparation for the next generation of facilities, such as the Facility for Rare Ion Beams (FRIB), which is scheduled for completion in 2022. An important step in this process is to perform the (d,n) reaction in inverse kinematics, with analyses that include Q-value spectra and differential cross sections. In this way, proton-transfer reactions can be placed on the same level as the more commonly used neutron-transfer reactions, such as (d,p), (9Be,8Be), and (13C,12C). Here we present an overview of the techniques used in (d,p) and (d,n), and some recent data from (d,n) reactions in inverse kinematics using stable beams of 12C and 16O.



rate research

Read More

328 - Y.Satou , T.Nakamura , Y.Kondo 2011
A Gamow-Teller (GT) transition from the drip-line nucleus 14Be to 14B was studied via the (p,n) reaction in inverse kinematics using a secondary 14Be beam at 69 MeV/nucleon. The invariant mass method is employed to reconstruct the energy spectrum. A peak is observed at an excitation energy of 1.27(2) MeV in 14B, together with bumps at 2.08 and 4.06(5) MeV. The observed forward peaking of the state at 1.27 MeV and a good description for the differential cross section, obtained with a DWBA calculation provide support for the 1+ assignment to this state. By extrapolating the cross section to zero momentum transfer the GT-transition strength is deduced. The value is found to compare well with that reported in a beta-delayed neutron emission study.
Inelastic and multi-nucleon transfer reactions between a $^{238}$U beam, accelerated at 6.14 MeV/u, and a $^{12}$C target were used for the production of neutron-rich, fissioning systems from U to Cm. A Si telescope, devoted to the detection of the target-like nuclei, provided a characterization of the fissioning systems in atomic and mass numbers, as well as in excitation energy. Cross-sections, angular and excitation-energy distributions were measured for the inelastic and transfer channels. Possible excitations of the target-like nuclei were experimentally investigated for the first time, by means of g -ray measurements. The decays from the first excited states of $^{12}$C, $^{11}$B and $^{10}$Be were observed with probabilities of 0.12 - 0.14, while no evidence for the population of higher-lying states was found. Moreover, the fission probabilities of $^{238}$U, $^{239}$Np and $^{240,241,242}$Pu and $^{244}$Cm were determined as a function of the excitation energy.
Excited states of the neutron-rich isotopes $^{42,44}$S and $^{41,43}$P have been studied via inverse-kinematics proton scattering from a liquid hydrogen target, using the GRETINA $gamma$-ray tracking array to extract inelastic scattering cross sections. Deformation lengths of the $2^+_1$ excitations in $^{42,44}$S have been determined and, when combined with deformation lengths determined with electromagnetic probes, yield the ratio of neutron-to-proton matrix elements $M_n/M_p$ for the $2^+_1$ excitations in these nuclei. The present results for $^{41,43}$P$(p,p)$ are used to compare two shell model interactions, SDPF-U and SDPF-MU. As in a recent study of $^{42}$Si, the present results on $^{41,43}$P favor the SDPF-MU interaction.
152 - A. Navin 2010
The SPIRAL facility at GANIL, operational since 2001, is described briefly. The diverse physics program using the re-accelerated (1.2 to 25 MeV/u) beams ranging from He to Kr and the instrumentation specially developed for their exploitation are presented. Results of these studies, using both direct and compound processes, addressing various questions related to the existence of exotic states of nuclear matter, evolution of new magic numbers, tunnelling of exotic nuclei, neutron correlations, exotic pathways in astrophysical sites and characterization of the continuum are discussed. The future prospects for the facility and the path towards SPIRAL2, a next generation ISOL facility, are also briefly presented.
The cross section for the $^3$He(e, e$$d)p reaction has been measured as a function of the missing momentum $p_m$ in q$omega$ -constant kinematics at beam energies of 370 and 576 MeV for values of the three-momentum transfer $q$ of 412, 504 and 604 mevc. The L(+TT), T and LT structure functions have been separated for $q$ = 412 and 504 mevc. The data are compared to three-body Faddeev calculations, including meson-exchange currents (MEC), and to calculations based on a covariant diagrammatic expansion. The influence of final-state interactions and meson-exchange currents is discussed. The $p_m$-dependence of the data is reasonably well described by all calculations. However, the most advanced Faddeev calculations, which employ the AV18 nucleon-nucleon interaction and include MEC, overestimate the measured cross sections, especially the longitudinal part, and at the larger values of $q$. The diagrammatic approach gives a fair description of the cross section, but under(over)estimates the longitudinal (transverse) structure function.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا